import gradio as gr | |
from transformers import pipeline | |
def do_action(text): | |
pipe = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection") | |
result = pipe(text, top_k=10) | |
# Reformat our result | |
result = {item['label']: item['score'] for item in result} | |
return result | |
iface = gr.Interface(fn=do_action, inputs="text", outputs="label") | |
iface.launch() | |