Spaces:
Runtime error
Runtime error
wendys-llc
commited on
Commit
•
8440562
1
Parent(s):
4ccee0d
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,20 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
import gradio as gr
|
3 |
from clip_interrogator import Config, Interrogator
|
4 |
-
from share_btn import community_icon_html, loading_icon_html, share_js
|
5 |
|
6 |
-
MODELS = ['ViT-L (best for Stable Diffusion 1.*)', 'ViT-H (best for Stable Diffusion 2.*)']
|
|
|
7 |
|
8 |
# load BLIP and ViT-L https://huggingface.co/openai/clip-vit-large-patch14
|
9 |
config = Config(clip_model_name="ViT-L-14/openai")
|
10 |
-
ci_vitl = Interrogator(config)
|
11 |
-
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
|
12 |
-
|
13 |
-
# load ViT-H https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K
|
14 |
-
config.blip_model = ci_vitl.blip_model
|
15 |
-
config.clip_model_name = "ViT-H-14/laion2b_s32b_b79k"
|
16 |
-
ci_vith = Interrogator(config)
|
17 |
-
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
|
18 |
-
|
19 |
-
|
20 |
-
def image_analysis(image, clip_model_name):
|
21 |
-
# move selected model to GPU and other model to CPU
|
22 |
-
if clip_model_name == MODELS[0]:
|
23 |
-
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
|
24 |
-
ci_vitl.clip_model = ci_vitl.clip_model.to(ci_vitl.device)
|
25 |
-
ci = ci_vitl
|
26 |
-
else:
|
27 |
-
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
|
28 |
-
ci_vith.clip_model = ci_vith.clip_model.to(ci_vith.device)
|
29 |
-
ci = ci_vith
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
image = image.convert('RGB')
|
32 |
image_features = ci.image_to_features(image)
|
33 |
|
@@ -47,20 +34,6 @@ def image_analysis(image, clip_model_name):
|
|
47 |
|
48 |
|
49 |
def image_to_prompt(image, clip_model_name, mode):
|
50 |
-
# move selected model to GPU and other model to CPU
|
51 |
-
if clip_model_name == MODELS[0]:
|
52 |
-
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
|
53 |
-
ci_vitl.clip_model = ci_vitl.clip_model.to(ci_vitl.device)
|
54 |
-
ci = ci_vitl
|
55 |
-
else:
|
56 |
-
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
|
57 |
-
ci_vith.clip_model = ci_vith.clip_model.to(ci_vith.device)
|
58 |
-
ci = ci_vith
|
59 |
-
|
60 |
-
ci.config.blip_num_beams = 64
|
61 |
-
ci.config.chunk_size = 2048
|
62 |
-
ci.config.flavor_intermediate_count = 2048 if clip_model_name == MODELS[0] else 1024
|
63 |
-
|
64 |
image = image.convert('RGB')
|
65 |
if mode == 'best':
|
66 |
prompt = ci.interrogate(image)
|
@@ -71,7 +44,7 @@ def image_to_prompt(image, clip_model_name, mode):
|
|
71 |
elif mode == 'negative':
|
72 |
prompt = ci.interrogate_negative(image)
|
73 |
|
74 |
-
return prompt
|
75 |
|
76 |
|
77 |
TITLE = """
|
@@ -163,7 +136,7 @@ def analyze_tab():
|
|
163 |
ex = gr.Examples(
|
164 |
examples=examples,
|
165 |
fn=image_analysis,
|
166 |
-
inputs=[input_image
|
167 |
outputs=[medium, artist, movement, trending, flavor],
|
168 |
cache_examples=True,
|
169 |
run_on_click=True
|
@@ -179,22 +152,16 @@ with gr.Blocks(css=CSS) as block:
|
|
179 |
with gr.Row():
|
180 |
input_image = gr.Image(type='pil', elem_id="input-img")
|
181 |
with gr.Column():
|
182 |
-
input_model = gr.Dropdown(MODELS, value=MODELS[0], label='CLIP Model')
|
183 |
input_mode = gr.Radio(['best', 'fast', 'classic', 'negative'], value='best', label='Mode')
|
184 |
submit_btn = gr.Button("Submit", api_name="image-to-prompt")
|
185 |
output_text = gr.Textbox(label="Output", elem_id="output-txt")
|
186 |
|
187 |
-
with gr.Group(elem_id="share-btn-container"):
|
188 |
-
community_icon = gr.HTML(community_icon_html, visible=False)
|
189 |
-
loading_icon = gr.HTML(loading_icon_html, visible=False)
|
190 |
-
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
|
191 |
-
|
192 |
examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']]
|
193 |
ex = gr.Examples(
|
194 |
examples=examples,
|
195 |
fn=image_to_prompt,
|
196 |
inputs=[input_image, input_model, input_mode],
|
197 |
-
outputs=[output_text
|
198 |
cache_examples=True,
|
199 |
run_on_click=True
|
200 |
)
|
@@ -208,8 +175,8 @@ with gr.Blocks(css=CSS) as block:
|
|
208 |
submit_btn.click(
|
209 |
fn=image_to_prompt,
|
210 |
inputs=[input_image, input_model, input_mode],
|
211 |
-
outputs=[output_text
|
212 |
)
|
213 |
share_button.click(None, [], [], _js=share_js)
|
214 |
|
215 |
-
block.queue(max_size=64).launch(show_api=False)
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
import gradio as gr
|
3 |
from clip_interrogator import Config, Interrogator
|
|
|
4 |
|
5 |
+
# MODELS = ['ViT-L (best for Stable Diffusion 1.*)', 'ViT-H (best for Stable Diffusion 2.*)']
|
6 |
+
# MODELS = ['ViT-L (best for Stable Diffusion 1.*)',]
|
7 |
|
8 |
# load BLIP and ViT-L https://huggingface.co/openai/clip-vit-large-patch14
|
9 |
config = Config(clip_model_name="ViT-L-14/openai")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
ci = Interrogator(config)
|
12 |
+
ci.clip_model = ci_vitl.clip_model.to("cpu")
|
13 |
+
ci.config.blip_num_beams = 64
|
14 |
+
ci.config.chunk_size = 2048
|
15 |
+
ci.config.flavor_intermediate_count = 2048 # 1024
|
16 |
+
|
17 |
+
def image_analysis(image):
|
18 |
image = image.convert('RGB')
|
19 |
image_features = ci.image_to_features(image)
|
20 |
|
|
|
34 |
|
35 |
|
36 |
def image_to_prompt(image, clip_model_name, mode):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
image = image.convert('RGB')
|
38 |
if mode == 'best':
|
39 |
prompt = ci.interrogate(image)
|
|
|
44 |
elif mode == 'negative':
|
45 |
prompt = ci.interrogate_negative(image)
|
46 |
|
47 |
+
return prompt
|
48 |
|
49 |
|
50 |
TITLE = """
|
|
|
136 |
ex = gr.Examples(
|
137 |
examples=examples,
|
138 |
fn=image_analysis,
|
139 |
+
inputs=[input_image],
|
140 |
outputs=[medium, artist, movement, trending, flavor],
|
141 |
cache_examples=True,
|
142 |
run_on_click=True
|
|
|
152 |
with gr.Row():
|
153 |
input_image = gr.Image(type='pil', elem_id="input-img")
|
154 |
with gr.Column():
|
|
|
155 |
input_mode = gr.Radio(['best', 'fast', 'classic', 'negative'], value='best', label='Mode')
|
156 |
submit_btn = gr.Button("Submit", api_name="image-to-prompt")
|
157 |
output_text = gr.Textbox(label="Output", elem_id="output-txt")
|
158 |
|
|
|
|
|
|
|
|
|
|
|
159 |
examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']]
|
160 |
ex = gr.Examples(
|
161 |
examples=examples,
|
162 |
fn=image_to_prompt,
|
163 |
inputs=[input_image, input_model, input_mode],
|
164 |
+
outputs=[output_text],
|
165 |
cache_examples=True,
|
166 |
run_on_click=True
|
167 |
)
|
|
|
175 |
submit_btn.click(
|
176 |
fn=image_to_prompt,
|
177 |
inputs=[input_image, input_model, input_mode],
|
178 |
+
outputs=[output_text]
|
179 |
)
|
180 |
share_button.click(None, [], [], _js=share_js)
|
181 |
|
182 |
+
block.queue(max_size=64).launch(show_api=False)
|