Spaces:
Running
Running
from datetime import datetime | |
from typing import List, Optional, Tuple | |
import gradio as gr | |
from datasets import load_dataset | |
from huggingface_hub import InferenceClient | |
from config.prompt_gui import ( | |
prompt_template_gui, | |
template_gui, | |
) | |
from util.data_config import extrair_dados_config | |
regras, projetos, desenvolvedor_name, desenvolvedor_nickname, desenvolvedor_function, desenvolvedor_github, desenvolvedor_portfolio, desenvolvedor_profile, desenvolvedor_email, desenvolvedor_resumo, desenvolvedor_description, name_gui, country = extrair_dados_config() | |
try: | |
with open("static/assets/js/script.js", "r", encoding="UTF-8") as js_file: | |
js_code = js_file.read() | |
except: | |
raise "Erro ao carrega codigo js" | |
now: datetime = datetime.now() | |
model: str = "meta-llama/Llama-3.2-3B-Instruct" | |
js=js_code | |
template_gui = template_gui() | |
prompt_template = prompt_template_gui(template_gui) | |
client: InferenceClient = InferenceClient( | |
model=model | |
) | |
dataset = load_dataset("wendellast/GUI-Ban") | |
def get_response_from_huggingface_dataset(message: str, dataset) -> Optional[str]: | |
for data in dataset["train"]: | |
if "dialog" in data and len(data["dialog"]) > 1: | |
input_text: str = data["dialog"][0].lower() | |
response_text: str = data["dialog"][1] | |
if input_text == message.lower(): | |
return response_text | |
return None | |
def respond( | |
message: str, | |
history: List[Tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
) -> any: | |
response: Optional[str] = get_response_from_huggingface_dataset(message, dataset) | |
if response: | |
yield response | |
return | |
historico: str = "" | |
for user_msg, bot_reply in history: | |
if user_msg: | |
historico += f"Usuário: {user_msg}\n" | |
if bot_reply: | |
historico += f"IA: {bot_reply}\n" | |
prompt: str = prompt_template.format( | |
name=name_gui, | |
data_atual=now.strftime("%d/%m/%Y %H:%M:%S"), | |
regras=regras, | |
projetos=projetos, | |
desenvolvedor_name=desenvolvedor_name, | |
desenvolvedor_nickname=desenvolvedor_nickname, | |
desenvolvedor_function=desenvolvedor_function, | |
desenvolvedor_github=desenvolvedor_github, | |
desenvolvedor_portfolio=desenvolvedor_portfolio, | |
desenvolvedor_profile=desenvolvedor_profile, | |
desenvolvedor_email=desenvolvedor_email, | |
desenvolvedor_resumo=" ".join(desenvolvedor_resumo), | |
desenvolvedor_description=desenvolvedor_description, | |
pais=country, | |
historico=historico.strip(), | |
mensagem=message, | |
) | |
print(prompt) | |
messages: List[dict] = [{"role": "system", "content": prompt}] | |
response: str = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token: str = message.choices[0].delta.content | |
response += token | |
yield response | |
demo: gr.ChatInterface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
theme="gstaff/xkcd", | |
title="GUI", | |
js=js | |
) | |
# Inicializar a aplicação | |
if __name__ == "__main__": | |
demo.launch() | |