LatentSync / latentsync /pipelines /lipsync_pipeline.py
welher's picture
Upload folder using huggingface_hub
8d11d43 verified
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/pipelines/pipeline_animation.py
import inspect
import math
import os
import shutil
from typing import Callable, List, Optional, Union
import subprocess
import numpy as np
import torch
import torchvision
from torchvision import transforms
from packaging import version
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL
from diffusers.pipelines import DiffusionPipeline
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import deprecate, logging
from einops import rearrange
import cv2
from ..models.unet import UNet3DConditionModel
from ..utils.util import read_video, read_audio, write_video, check_ffmpeg_installed
from ..utils.image_processor import ImageProcessor, load_fixed_mask
from ..whisper.audio2feature import Audio2Feature
import tqdm
import soundfile as sf
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LipsyncPipeline(DiffusionPipeline):
_optional_components = []
def __init__(
self,
vae: AutoencoderKL,
audio_encoder: Audio2Feature,
unet: UNet3DConditionModel,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = (
hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
)
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
audio_encoder=audio_encoder,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.set_progress_bar_config(desc="Steps")
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def decode_latents(self, latents):
latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
latents = rearrange(latents, "b c f h w -> (b f) c h w")
decoded_latents = self.vae.decode(latents).sample
return decoded_latents
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, height, width, callback_steps):
assert height == width, "Height and width must be equal"
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(self, batch_size, num_frames, num_channels_latents, height, width, dtype, device, generator):
shape = (
batch_size,
num_channels_latents,
1,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
rand_device = "cpu" if device.type == "mps" else device
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
latents = latents.repeat(1, 1, num_frames, 1, 1)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_mask_latents(
self, mask, masked_image, height, width, dtype, device, generator, do_classifier_free_guidance
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
)
masked_image = masked_image.to(device=device, dtype=dtype)
# encode the mask image into latents space so we can concatenate it to the latents
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
mask = mask.to(device=device, dtype=dtype)
# assume batch size = 1
mask = rearrange(mask, "f c h w -> 1 c f h w")
masked_image_latents = rearrange(masked_image_latents, "f c h w -> 1 c f h w")
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
return mask, masked_image_latents
def prepare_image_latents(self, images, device, dtype, generator, do_classifier_free_guidance):
images = images.to(device=device, dtype=dtype)
image_latents = self.vae.encode(images).latent_dist.sample(generator=generator)
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
image_latents = rearrange(image_latents, "f c h w -> 1 c f h w")
image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
return image_latents
def set_progress_bar_config(self, **kwargs):
if not hasattr(self, "_progress_bar_config"):
self._progress_bar_config = {}
self._progress_bar_config.update(kwargs)
@staticmethod
def paste_surrounding_pixels_back(decoded_latents, pixel_values, masks, device, weight_dtype):
# Paste the surrounding pixels back, because we only want to change the mouth region
pixel_values = pixel_values.to(device=device, dtype=weight_dtype)
masks = masks.to(device=device, dtype=weight_dtype)
combined_pixel_values = decoded_latents * masks + pixel_values * (1 - masks)
return combined_pixel_values
@staticmethod
def pixel_values_to_images(pixel_values: torch.Tensor):
pixel_values = rearrange(pixel_values, "f c h w -> f h w c")
pixel_values = (pixel_values / 2 + 0.5).clamp(0, 1)
images = (pixel_values * 255).to(torch.uint8)
images = images.cpu().numpy()
return images
def affine_transform_video(self, video_frames: np.ndarray):
faces = []
boxes = []
affine_matrices = []
print(f"Affine transforming {len(video_frames)} faces...")
for frame in tqdm.tqdm(video_frames):
face, box, affine_matrix = self.image_processor.affine_transform(frame)
faces.append(face)
boxes.append(box)
affine_matrices.append(affine_matrix)
faces = torch.stack(faces)
return faces, boxes, affine_matrices
def restore_video(self, faces: torch.Tensor, video_frames: np.ndarray, boxes: list, affine_matrices: list):
video_frames = video_frames[: len(faces)]
out_frames = []
print(f"Restoring {len(faces)} faces...")
for index, face in enumerate(tqdm.tqdm(faces)):
x1, y1, x2, y2 = boxes[index]
height = int(y2 - y1)
width = int(x2 - x1)
face = torchvision.transforms.functional.resize(
face, size=(height, width), interpolation=transforms.InterpolationMode.BICUBIC, antialias=True
)
out_frame = self.image_processor.restorer.restore_img(video_frames[index], face, affine_matrices[index])
out_frames.append(out_frame)
return np.stack(out_frames, axis=0)
def loop_video(self, whisper_chunks: list, video_frames: np.ndarray):
# If the audio is longer than the video, we need to loop the video
if len(whisper_chunks) > len(video_frames):
faces, boxes, affine_matrices = self.affine_transform_video(video_frames)
num_loops = math.ceil(len(whisper_chunks) / len(video_frames))
loop_video_frames = []
loop_faces = []
loop_boxes = []
loop_affine_matrices = []
for i in range(num_loops):
if i % 2 == 0:
loop_video_frames.append(video_frames)
loop_faces.append(faces)
loop_boxes += boxes
loop_affine_matrices += affine_matrices
else:
loop_video_frames.append(video_frames[::-1])
loop_faces.append(faces.flip(0))
loop_boxes += boxes[::-1]
loop_affine_matrices += affine_matrices[::-1]
video_frames = np.concatenate(loop_video_frames, axis=0)[: len(whisper_chunks)]
faces = torch.cat(loop_faces, dim=0)[: len(whisper_chunks)]
boxes = loop_boxes[: len(whisper_chunks)]
affine_matrices = loop_affine_matrices[: len(whisper_chunks)]
else:
video_frames = video_frames[: len(whisper_chunks)]
faces, boxes, affine_matrices = self.affine_transform_video(video_frames)
return video_frames, faces, boxes, affine_matrices
@torch.no_grad()
def __call__(
self,
video_path: str,
audio_path: str,
video_out_path: str,
video_mask_path: str = None,
num_frames: int = 16,
video_fps: int = 25,
audio_sample_rate: int = 16000,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 20,
guidance_scale: float = 1.5,
weight_dtype: Optional[torch.dtype] = torch.float16,
eta: float = 0.0,
mask_image_path: str = "latentsync/utils/mask.png",
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
is_train = self.unet.training
self.unet.eval()
check_ffmpeg_installed()
# 0. Define call parameters
batch_size = 1
device = self._execution_device
mask_image = load_fixed_mask(height, mask_image_path)
self.image_processor = ImageProcessor(height, device="cuda", mask_image=mask_image)
self.set_progress_bar_config(desc=f"Sample frames: {num_frames}")
# 1. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 2. Check inputs
self.check_inputs(height, width, callback_steps)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 4. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
whisper_feature = self.audio_encoder.audio2feat(audio_path)
whisper_chunks = self.audio_encoder.feature2chunks(feature_array=whisper_feature, fps=video_fps)
audio_samples = read_audio(audio_path)
video_frames = read_video(video_path, use_decord=False)
video_frames, faces, boxes, affine_matrices = self.loop_video(whisper_chunks, video_frames)
synced_video_frames = []
num_channels_latents = self.vae.config.latent_channels
# Prepare latent variables
all_latents = self.prepare_latents(
batch_size,
len(whisper_chunks),
num_channels_latents,
height,
width,
weight_dtype,
device,
generator,
)
num_inferences = math.ceil(len(whisper_chunks) / num_frames)
for i in tqdm.tqdm(range(num_inferences), desc="Doing inference..."):
if self.unet.add_audio_layer:
audio_embeds = torch.stack(whisper_chunks[i * num_frames : (i + 1) * num_frames])
audio_embeds = audio_embeds.to(device, dtype=weight_dtype)
if do_classifier_free_guidance:
null_audio_embeds = torch.zeros_like(audio_embeds)
audio_embeds = torch.cat([null_audio_embeds, audio_embeds])
else:
audio_embeds = None
inference_faces = faces[i * num_frames : (i + 1) * num_frames]
latents = all_latents[:, :, i * num_frames : (i + 1) * num_frames]
ref_pixel_values, masked_pixel_values, masks = self.image_processor.prepare_masks_and_masked_images(
inference_faces, affine_transform=False
)
# 7. Prepare mask latent variables
mask_latents, masked_image_latents = self.prepare_mask_latents(
masks,
masked_pixel_values,
height,
width,
weight_dtype,
device,
generator,
do_classifier_free_guidance,
)
# 8. Prepare image latents
ref_latents = self.prepare_image_latents(
ref_pixel_values,
device,
weight_dtype,
generator,
do_classifier_free_guidance,
)
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for j, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
unet_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
unet_input = self.scheduler.scale_model_input(unet_input, t)
# concat latents, mask, masked_image_latents in the channel dimension
unet_input = torch.cat(
[unet_input, mask_latents, masked_image_latents, ref_latents], dim=1
)
# predict the noise residual
noise_pred = self.unet(
unet_input, t, encoder_hidden_states=audio_embeds
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_audio = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_audio - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if j == len(timesteps) - 1 or ((j + 1) > num_warmup_steps and (j + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and j % callback_steps == 0:
callback(j, t, latents)
# Recover the pixel values
decoded_latents = self.decode_latents(latents)
decoded_latents = self.paste_surrounding_pixels_back(
decoded_latents, ref_pixel_values, 1 - masks, device, weight_dtype
)
synced_video_frames.append(decoded_latents)
synced_video_frames = self.restore_video(torch.cat(synced_video_frames), video_frames, boxes, affine_matrices)
audio_samples_remain_length = int(synced_video_frames.shape[0] / video_fps * audio_sample_rate)
audio_samples = audio_samples[:audio_samples_remain_length].cpu().numpy()
if is_train:
self.unet.train()
temp_dir = "temp"
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir, exist_ok=True)
write_video(os.path.join(temp_dir, "video.mp4"), synced_video_frames, fps=25)
sf.write(os.path.join(temp_dir, "audio.wav"), audio_samples, audio_sample_rate)
command = f"ffmpeg -y -loglevel error -nostdin -i {os.path.join(temp_dir, 'video.mp4')} -i {os.path.join(temp_dir, 'audio.wav')} -c:v libx264 -crf 18 -c:a aac -q:v 0 -q:a 0 {video_out_path}"
subprocess.run(command, shell=True)