Spaces:
Runtime error
Runtime error
Linoy Tsaban
commited on
Commit
·
8623f65
1
Parent(s):
32fdae0
Update preprocess_utils.py
Browse fileschange in dm components loading
- preprocess_utils.py +22 -42
preprocess_utils.py
CHANGED
@@ -10,7 +10,7 @@ import torch.nn as nn
|
|
10 |
import argparse
|
11 |
from torchvision.io import write_video
|
12 |
from pathlib import Path
|
13 |
-
from
|
14 |
import torchvision.transforms as T
|
15 |
|
16 |
|
@@ -25,7 +25,7 @@ def get_timesteps(scheduler, num_inference_steps, strength, device):
|
|
25 |
|
26 |
|
27 |
class Preprocess(nn.Module):
|
28 |
-
def __init__(self, device, opt, hf_key=None):
|
29 |
super().__init__()
|
30 |
|
31 |
self.device = device
|
@@ -47,15 +47,23 @@ class Preprocess(nn.Module):
|
|
47 |
model_key = "stabilityai/stable-diffusion-2-depth"
|
48 |
else:
|
49 |
raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
|
|
|
50 |
self.model_key = model_key
|
|
|
51 |
# Create model
|
52 |
-
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
|
53 |
-
|
54 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
|
55 |
-
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
|
56 |
-
|
57 |
-
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
self.total_inverted_latents = {}
|
60 |
|
61 |
self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
|
@@ -74,11 +82,12 @@ class Preprocess(nn.Module):
|
|
74 |
self.canny_cond = self.get_canny_cond()
|
75 |
elif self.sd_version == 'depth':
|
76 |
self.depth_maps = self.prepare_depth_maps()
|
77 |
-
self.scheduler =
|
78 |
|
79 |
-
|
80 |
print(f'[INFO] loaded stable diffusion!')
|
81 |
-
|
|
|
82 |
@torch.no_grad()
|
83 |
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
|
84 |
depth_maps = []
|
@@ -363,33 +372,4 @@ def prep(opt):
|
|
363 |
|
364 |
|
365 |
return frames, latents, total_inverted_latents, rgb_reconstruction
|
366 |
-
|
367 |
-
# os.mkdir(os.path.join(save_path, f'frames'))
|
368 |
-
# for i, frame in enumerate(recon_frames):
|
369 |
-
# T.ToPILImage()(frame).save(os.path.join(save_path, f'frames', f'{i:05d}.png'))
|
370 |
-
# frames = (recon_frames * 255).to(torch.uint8).cpu().permute(0, 2, 3, 1)
|
371 |
-
# write_video(os.path.join(save_path, f'inverted.mp4'), frames, fps=10)
|
372 |
-
|
373 |
-
|
374 |
-
# if __name__ == "__main__":
|
375 |
-
# device = 'cuda'
|
376 |
-
# parser = argparse.ArgumentParser()
|
377 |
-
# parser.add_argument('--data_path', type=str,
|
378 |
-
# default='data/woman-running.mp4')
|
379 |
-
# parser.add_argument('--H', type=int, default=512,
|
380 |
-
# help='for non-square videos, we recommand using 672 x 384 or 384 x 672, aspect ratio 1.75')
|
381 |
-
# parser.add_argument('--W', type=int, default=512,
|
382 |
-
# help='for non-square videos, we recommand using 672 x 384 or 384 x 672, aspect ratio 1.75')
|
383 |
-
# parser.add_argument('--save_dir', type=str, default='latents')
|
384 |
-
# parser.add_argument('--sd_version', type=str, default='2.1', choices=['1.5', '2.0', '2.1', 'ControlNet', 'depth'],
|
385 |
-
# help="stable diffusion version")
|
386 |
-
# parser.add_argument('--steps', type=int, default=500)
|
387 |
-
# parser.add_argument('--batch_size', type=int, default=40)
|
388 |
-
# parser.add_argument('--save_steps', type=int, default=50)
|
389 |
-
# parser.add_argument('--n_frames', type=int, default=40)
|
390 |
-
# parser.add_argument('--inversion_prompt', type=str, default='a woman running')
|
391 |
-
# opt = parser.parse_args()
|
392 |
-
# video_path = opt.data_path
|
393 |
-
# save_video_frames(video_path, img_size=(opt.H, opt.W))
|
394 |
-
# opt.data_path = os.path.join('data', Path(video_path).stem)
|
395 |
-
# prep(opt)
|
|
|
10 |
import argparse
|
11 |
from torchvision.io import write_video
|
12 |
from pathlib import Path
|
13 |
+
from util import *
|
14 |
import torchvision.transforms as T
|
15 |
|
16 |
|
|
|
25 |
|
26 |
|
27 |
class Preprocess(nn.Module):
|
28 |
+
def __init__(self, device, opt, vae, tokenizer, text_encoder, unet,scheduler, hf_key=None):
|
29 |
super().__init__()
|
30 |
|
31 |
self.device = device
|
|
|
47 |
model_key = "stabilityai/stable-diffusion-2-depth"
|
48 |
else:
|
49 |
raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
|
50 |
+
|
51 |
self.model_key = model_key
|
52 |
+
|
53 |
# Create model
|
54 |
+
# self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
|
55 |
+
# torch_dtype=torch.float16).to(self.device)
|
56 |
+
# self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
|
57 |
+
# self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
|
58 |
+
# torch_dtype=torch.float16).to(self.device)
|
59 |
+
# self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
|
60 |
+
# torch_dtype=torch.float16).to(self.device)
|
61 |
+
|
62 |
+
self.vae = vae
|
63 |
+
self.tokenizer = tokenizer
|
64 |
+
self.text_encoder = text_encoder
|
65 |
+
self.unet = unet
|
66 |
+
self.scheduler=scheduler
|
67 |
self.total_inverted_latents = {}
|
68 |
|
69 |
self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
|
|
|
82 |
self.canny_cond = self.get_canny_cond()
|
83 |
elif self.sd_version == 'depth':
|
84 |
self.depth_maps = self.prepare_depth_maps()
|
85 |
+
self.scheduler = scheduler
|
86 |
|
87 |
+
self.unet.enable_xformers_memory_efficient_attention()
|
88 |
print(f'[INFO] loaded stable diffusion!')
|
89 |
+
|
90 |
+
|
91 |
@torch.no_grad()
|
92 |
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
|
93 |
depth_maps = []
|
|
|
372 |
|
373 |
|
374 |
return frames, latents, total_inverted_latents, rgb_reconstruction
|
375 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|