Spaces:
Runtime error
Runtime error
Linoy Tsaban
commited on
Commit
•
5eb8981
1
Parent(s):
4e5195b
Create tokenflow_pnp.py
Browse files- tokenflow_pnp.py +363 -0
tokenflow_pnp.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from pathlib import Path
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torchvision.transforms as T
|
9 |
+
import argparse
|
10 |
+
from PIL import Image
|
11 |
+
import yaml
|
12 |
+
from tqdm import tqdm
|
13 |
+
from transformers import logging
|
14 |
+
from diffusers import DDIMScheduler, StableDiffusionPipeline
|
15 |
+
|
16 |
+
from tokenflow_utils import *
|
17 |
+
from util import save_video, seed_everything
|
18 |
+
|
19 |
+
# suppress partial model loading warning
|
20 |
+
logging.set_verbosity_error()
|
21 |
+
|
22 |
+
VAE_BATCH_SIZE = 10
|
23 |
+
|
24 |
+
|
25 |
+
class TokenFlow(nn.Module):
|
26 |
+
def __init__(self, config,
|
27 |
+
frames=None,
|
28 |
+
# latents = None,
|
29 |
+
inverted_latents = None):
|
30 |
+
super().__init__()
|
31 |
+
self.config = config
|
32 |
+
self.device = config["device"]
|
33 |
+
|
34 |
+
sd_version = config["sd_version"]
|
35 |
+
self.sd_version = sd_version
|
36 |
+
if sd_version == '2.1':
|
37 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
38 |
+
elif sd_version == '2.0':
|
39 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
40 |
+
elif sd_version == '1.5':
|
41 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
42 |
+
elif sd_version == 'depth':
|
43 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
44 |
+
else:
|
45 |
+
raise ValueError(f'Stable-diffusion version {sd_version} not supported.')
|
46 |
+
|
47 |
+
# Create SD models
|
48 |
+
print('Loading SD model')
|
49 |
+
|
50 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda")
|
51 |
+
pipe.enable_xformers_memory_efficient_attention()
|
52 |
+
|
53 |
+
self.vae = pipe.vae
|
54 |
+
self.tokenizer = pipe.tokenizer
|
55 |
+
self.text_encoder = pipe.text_encoder
|
56 |
+
self.unet = pipe.unet
|
57 |
+
|
58 |
+
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
59 |
+
self.scheduler.set_timesteps(config["n_timesteps"], device=self.device)
|
60 |
+
print('SD model loaded')
|
61 |
+
|
62 |
+
# data
|
63 |
+
self.frames, self.inverted_latents = frames, inverted_latents
|
64 |
+
self.latents_path = self.get_latents_path()
|
65 |
+
|
66 |
+
# load frames
|
67 |
+
self.paths, self.frames, self.latents, self.eps = self.get_data()
|
68 |
+
|
69 |
+
if self.sd_version == 'depth':
|
70 |
+
self.depth_maps = self.prepare_depth_maps()
|
71 |
+
|
72 |
+
self.text_embeds = self.get_text_embeds(config["prompt"], config["negative_prompt"])
|
73 |
+
# pnp_inversion_prompt = self.get_pnp_inversion_prompt()
|
74 |
+
self.pnp_guidance_embeds = self.get_text_embeds(config["pnp_inversion_prompt"], config["pnp_inversion_prompt"]).chunk(2)[0]
|
75 |
+
|
76 |
+
@torch.no_grad()
|
77 |
+
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
|
78 |
+
depth_maps = []
|
79 |
+
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
80 |
+
midas.to(device)
|
81 |
+
midas.eval()
|
82 |
+
|
83 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
84 |
+
|
85 |
+
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
|
86 |
+
transform = midas_transforms.dpt_transform
|
87 |
+
else:
|
88 |
+
transform = midas_transforms.small_transform
|
89 |
+
|
90 |
+
for i in range(len(self.paths)):
|
91 |
+
img = cv2.imread(self.paths[i])
|
92 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
93 |
+
|
94 |
+
latent_h = img.shape[0] // 8
|
95 |
+
latent_w = img.shape[1] // 8
|
96 |
+
|
97 |
+
input_batch = transform(img).to(device)
|
98 |
+
prediction = midas(input_batch)
|
99 |
+
|
100 |
+
depth_map = torch.nn.functional.interpolate(
|
101 |
+
prediction.unsqueeze(1),
|
102 |
+
size=(latent_h, latent_w),
|
103 |
+
mode="bicubic",
|
104 |
+
align_corners=False,
|
105 |
+
)
|
106 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
107 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
108 |
+
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
|
109 |
+
depth_maps.append(depth_map)
|
110 |
+
|
111 |
+
return torch.cat(depth_maps).to(torch.float16).to(self.device)
|
112 |
+
|
113 |
+
def get_pnp_inversion_prompt(self):
|
114 |
+
inv_prompts_path = os.path.join(str(Path(self.latents_path).parent), 'inversion_prompt.txt')
|
115 |
+
# read inversion prompt
|
116 |
+
with open(inv_prompts_path, 'r') as f:
|
117 |
+
inv_prompt = f.read()
|
118 |
+
return inv_prompt
|
119 |
+
|
120 |
+
def get_latents_path(self):
|
121 |
+
read_from_files = self.frames is None
|
122 |
+
# read_from_files = True
|
123 |
+
if read_from_files:
|
124 |
+
latents_path = os.path.join(self.config["latents_path"], f'sd_{self.config["sd_version"]}',
|
125 |
+
Path(self.config["data_path"]).stem, f'steps_{self.config["n_inversion_steps"]}')
|
126 |
+
latents_path = [x for x in glob.glob(f'{latents_path}/*') if '.' not in Path(x).name]
|
127 |
+
n_frames = [int([x for x in latents_path[i].split('/') if 'nframes' in x][0].split('_')[1]) for i in range(len(latents_path))]
|
128 |
+
print("n_frames", n_frames)
|
129 |
+
latents_path = latents_path[np.argmax(n_frames)]
|
130 |
+
print("latents_path", latents_path)
|
131 |
+
self.config["n_frames"] = min(max(n_frames), self.config["n_frames"])
|
132 |
+
|
133 |
+
else:
|
134 |
+
n_frames = self.frames.shape[0]
|
135 |
+
self.config["n_frames"] = min(n_frames, self.config["n_frames"])
|
136 |
+
|
137 |
+
if self.config["n_frames"] % self.config["batch_size"] != 0:
|
138 |
+
# make n_frames divisible by batch_size
|
139 |
+
self.config["n_frames"] = self.config["n_frames"] - (self.config["n_frames"] % self.config["batch_size"])
|
140 |
+
print("Number of frames: ", self.config["n_frames"])
|
141 |
+
if read_from_files:
|
142 |
+
print("YOOOOOOO", os.path.join(latents_path, 'latents'))
|
143 |
+
return os.path.join(latents_path, 'latents')
|
144 |
+
else:
|
145 |
+
return None
|
146 |
+
|
147 |
+
@torch.no_grad()
|
148 |
+
def get_text_embeds(self, prompt, negative_prompt, batch_size=1):
|
149 |
+
# Tokenize text and get embeddings
|
150 |
+
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
151 |
+
truncation=True, return_tensors='pt')
|
152 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
153 |
+
|
154 |
+
# Do the same for unconditional embeddings
|
155 |
+
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
156 |
+
return_tensors='pt')
|
157 |
+
|
158 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
159 |
+
|
160 |
+
# Cat for final embeddings
|
161 |
+
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
|
162 |
+
return text_embeddings
|
163 |
+
|
164 |
+
@torch.no_grad()
|
165 |
+
def encode_imgs(self, imgs, batch_size=VAE_BATCH_SIZE, deterministic=False):
|
166 |
+
imgs = 2 * imgs - 1
|
167 |
+
latents = []
|
168 |
+
for i in range(0, len(imgs), batch_size):
|
169 |
+
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
|
170 |
+
latent = posterior.mean if deterministic else posterior.sample()
|
171 |
+
latents.append(latent * 0.18215)
|
172 |
+
latents = torch.cat(latents)
|
173 |
+
return latents
|
174 |
+
|
175 |
+
@torch.no_grad()
|
176 |
+
def decode_latents(self, latents, batch_size=VAE_BATCH_SIZE):
|
177 |
+
latents = 1 / 0.18215 * latents
|
178 |
+
imgs = []
|
179 |
+
for i in range(0, len(latents), batch_size):
|
180 |
+
imgs.append(self.vae.decode(latents[i:i + batch_size]).sample)
|
181 |
+
imgs = torch.cat(imgs)
|
182 |
+
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
183 |
+
return imgs
|
184 |
+
|
185 |
+
|
186 |
+
def get_data(self):
|
187 |
+
read_from_files = self.frames is None
|
188 |
+
# read_from_files = True
|
189 |
+
if read_from_files:
|
190 |
+
# load frames
|
191 |
+
paths = [os.path.join(self.config["data_path"], "%05d.jpg" % idx) for idx in
|
192 |
+
range(self.config["n_frames"])]
|
193 |
+
if not os.path.exists(paths[0]):
|
194 |
+
paths = [os.path.join(self.config["data_path"], "%05d.png" % idx) for idx in
|
195 |
+
range(self.config["n_frames"])]
|
196 |
+
frames = [Image.open(paths[idx]).convert('RGB') for idx in range(self.config["n_frames"])]
|
197 |
+
if frames[0].size[0] == frames[0].size[1]:
|
198 |
+
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
|
199 |
+
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
|
200 |
+
save_video(frames, f'{self.config["output_path"]}/input_fps10.mp4', fps=10)
|
201 |
+
save_video(frames, f'{self.config["output_path"]}/input_fps20.mp4', fps=20)
|
202 |
+
save_video(frames, f'{self.config["output_path"]}/input_fps30.mp4', fps=30)
|
203 |
+
else:
|
204 |
+
frames = self.frames
|
205 |
+
# encode to latents
|
206 |
+
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
|
207 |
+
# get noise
|
208 |
+
eps = self.get_ddim_eps(latents, range(self.config["n_frames"])).to(torch.float16).to(self.device)
|
209 |
+
if not read_from_files:
|
210 |
+
return None, frames, latents, eps
|
211 |
+
return paths, frames, latents, eps
|
212 |
+
|
213 |
+
def get_ddim_eps(self, latent, indices):
|
214 |
+
read_from_files = self.inverted_latents is None
|
215 |
+
# read_from_files = True
|
216 |
+
if read_from_files:
|
217 |
+
noisest = max([int(x.split('_')[-1].split('.')[0]) for x in glob.glob(os.path.join(self.latents_path, f'noisy_latents_*.pt'))])
|
218 |
+
print("noisets:", noisest)
|
219 |
+
print("indecies:", indices)
|
220 |
+
latents_path = os.path.join(self.latents_path, f'noisy_latents_{noisest}.pt')
|
221 |
+
noisy_latent = torch.load(latents_path)[indices].to(self.device)
|
222 |
+
|
223 |
+
# path = os.path.join('test_latents', f'noisy_latents_{noisest}.pt')
|
224 |
+
# f_noisy_latent = torch.load(path)[indices].to(self.device)
|
225 |
+
# print(f_noisy_latent==noisy_latent)
|
226 |
+
else:
|
227 |
+
noisest = max([int(key.split("_")[-1]) for key in self.inverted_latents.keys()])
|
228 |
+
print("noisets:", noisest)
|
229 |
+
print("indecies:", indices)
|
230 |
+
noisy_latent = self.inverted_latents[f'noisy_latents_{noisest}'][indices]
|
231 |
+
|
232 |
+
alpha_prod_T = self.scheduler.alphas_cumprod[noisest]
|
233 |
+
mu_T, sigma_T = alpha_prod_T ** 0.5, (1 - alpha_prod_T) ** 0.5
|
234 |
+
eps = (noisy_latent - mu_T * latent) / sigma_T
|
235 |
+
return eps
|
236 |
+
|
237 |
+
@torch.no_grad()
|
238 |
+
def denoise_step(self, x, t, indices):
|
239 |
+
# register the time step and features in pnp injection modules
|
240 |
+
read_files = self.inverted_latents is None
|
241 |
+
|
242 |
+
if read_files:
|
243 |
+
source_latents = load_source_latents_t(t, self.latents_path)[indices]
|
244 |
+
|
245 |
+
else:
|
246 |
+
source_latents = self.inverted_latents[f'noisy_latents_{t}'][indices]
|
247 |
+
|
248 |
+
latent_model_input = torch.cat([source_latents] + ([x] * 2))
|
249 |
+
if self.sd_version == 'depth':
|
250 |
+
latent_model_input = torch.cat([latent_model_input, torch.cat([self.depth_maps[indices]] * 3)], dim=1)
|
251 |
+
|
252 |
+
register_time(self, t.item())
|
253 |
+
|
254 |
+
# compute text embeddings
|
255 |
+
text_embed_input = torch.cat([self.pnp_guidance_embeds.repeat(len(indices), 1, 1),
|
256 |
+
torch.repeat_interleave(self.text_embeds, len(indices), dim=0)])
|
257 |
+
|
258 |
+
# apply the denoising network
|
259 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input)['sample']
|
260 |
+
|
261 |
+
# perform guidance
|
262 |
+
_, noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3)
|
263 |
+
noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond)
|
264 |
+
|
265 |
+
# compute the denoising step with the reference model
|
266 |
+
denoised_latent = self.scheduler.step(noise_pred, t, x)['prev_sample']
|
267 |
+
return denoised_latent
|
268 |
+
|
269 |
+
@torch.autocast(dtype=torch.float16, device_type='cuda')
|
270 |
+
def batched_denoise_step(self, x, t, indices):
|
271 |
+
batch_size = self.config["batch_size"]
|
272 |
+
denoised_latents = []
|
273 |
+
pivotal_idx = torch.randint(batch_size, (len(x)//batch_size,)) + torch.arange(0,len(x),batch_size)
|
274 |
+
|
275 |
+
register_pivotal(self, True)
|
276 |
+
self.denoise_step(x[pivotal_idx], t, indices[pivotal_idx])
|
277 |
+
register_pivotal(self, False)
|
278 |
+
for i, b in enumerate(range(0, len(x), batch_size)):
|
279 |
+
register_batch_idx(self, i)
|
280 |
+
denoised_latents.append(self.denoise_step(x[b:b + batch_size], t, indices[b:b + batch_size]))
|
281 |
+
denoised_latents = torch.cat(denoised_latents)
|
282 |
+
return denoised_latents
|
283 |
+
|
284 |
+
def init_method(self, conv_injection_t, qk_injection_t):
|
285 |
+
self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
|
286 |
+
self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
|
287 |
+
register_extended_attention_pnp(self, self.qk_injection_timesteps)
|
288 |
+
register_conv_injection(self, self.conv_injection_timesteps)
|
289 |
+
set_tokenflow(self.unet)
|
290 |
+
|
291 |
+
def save_vae_recon(self):
|
292 |
+
os.makedirs(f'{self.config["output_path"]}/vae_recon', exist_ok=True)
|
293 |
+
decoded = self.decode_latents(self.latents)
|
294 |
+
for i in range(len(decoded)):
|
295 |
+
T.ToPILImage()(decoded[i]).save(f'{self.config["output_path"]}/vae_recon/%05d.png' % i)
|
296 |
+
save_video(decoded, f'{self.config["output_path"]}/vae_recon_10.mp4', fps=10)
|
297 |
+
save_video(decoded, f'{self.config["output_path"]}/vae_recon_20.mp4', fps=20)
|
298 |
+
save_video(decoded, f'{self.config["output_path"]}/vae_recon_30.mp4', fps=30)
|
299 |
+
|
300 |
+
def edit_video(self):
|
301 |
+
save_files = self.inverted_latents is None # if we're in the original non-demo setting
|
302 |
+
if save_files:
|
303 |
+
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
|
304 |
+
self.save_vae_recon()
|
305 |
+
# self.save_vae_recon()
|
306 |
+
pnp_f_t = int(self.config["n_timesteps"] * self.config["pnp_f_t"])
|
307 |
+
pnp_attn_t = int(self.config["n_timesteps"] * self.config["pnp_attn_t"])
|
308 |
+
|
309 |
+
self.init_method(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
|
310 |
+
|
311 |
+
noisy_latents = self.scheduler.add_noise(self.latents, self.eps, self.scheduler.timesteps[0])
|
312 |
+
edited_frames = self.sample_loop(noisy_latents, torch.arange(self.config["n_frames"]))
|
313 |
+
|
314 |
+
if save_files:
|
315 |
+
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_10.mp4')
|
316 |
+
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_20.mp4', fps=20)
|
317 |
+
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_PnP_fps_30.mp4', fps=30)
|
318 |
+
print('Done!')
|
319 |
+
else:
|
320 |
+
return edited_frames
|
321 |
+
|
322 |
+
def sample_loop(self, x, indices):
|
323 |
+
save_files = self.inverted_latents is None # if we're in the original non-demo setting
|
324 |
+
# save_files = True
|
325 |
+
if save_files:
|
326 |
+
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
|
327 |
+
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):
|
328 |
+
x = self.batched_denoise_step(x, t, indices)
|
329 |
+
|
330 |
+
decoded_latents = self.decode_latents(x)
|
331 |
+
if save_files:
|
332 |
+
for i in range(len(decoded_latents)):
|
333 |
+
T.ToPILImage()(decoded_latents[i]).save(f'{self.config["output_path"]}/img_ode/%05d.png' % i)
|
334 |
+
|
335 |
+
return decoded_latents
|
336 |
+
|
337 |
+
|
338 |
+
# def run(config):
|
339 |
+
# seed_everything(config["seed"])
|
340 |
+
# print(config)
|
341 |
+
# editor = TokenFlow(config)
|
342 |
+
# editor.edit_video()
|
343 |
+
|
344 |
+
|
345 |
+
# if __name__ == '__main__':
|
346 |
+
# parser = argparse.ArgumentParser()
|
347 |
+
# parser.add_argument('--config_path', type=str, default='configs/config_pnp.yaml')
|
348 |
+
# opt = parser.parse_args()
|
349 |
+
# with open(opt.config_path, "r") as f:
|
350 |
+
# config = yaml.safe_load(f)
|
351 |
+
# config["output_path"] = os.path.join(config["output_path"] + f'_pnp_SD_{config["sd_version"]}',
|
352 |
+
# Path(config["data_path"]).stem,
|
353 |
+
# config["prompt"][:240],
|
354 |
+
# f'attn_{config["pnp_attn_t"]}_f_{config["pnp_f_t"]}',
|
355 |
+
# f'batch_size_{str(config["batch_size"])}',
|
356 |
+
# str(config["n_timesteps"]),
|
357 |
+
# )
|
358 |
+
# os.makedirs(config["output_path"], exist_ok=True)
|
359 |
+
# print(config["data_path"])
|
360 |
+
# assert os.path.exists(config["data_path"]), "Data path does not exist"
|
361 |
+
# with open(os.path.join(config["output_path"], "config.yaml"), "w") as f:
|
362 |
+
# yaml.dump(config, f)
|
363 |
+
# run(config)
|