DeepOperateAI-Video / evaluation /eval_goldfish_movie_chat.py
weiyi01191's picture
Upload 207 files
dc80a97
import sys
import os
project_dir = os.getcwd()
sys.path.append(project_dir)
import json
from tqdm import tqdm
from goldfish_lv import GoldFish_LV,split_subtitles,time_to_seconds
import argparse
import json
import argparse
import torch
from tqdm import tqdm
# from openai import OpenAI
from minigpt4.common.eval_utils import init_model
from minigpt4.conversation.conversation import CONV_VISION
from index import MemoryIndex
import pysrt
import chardet
import torch
import random
import numpy as np
import torch.backends.cudnn as cudnn
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--neighbours", type=int, default=-1)
parser.add_argument("--neighbours_global", type=int, default=-1)
parser.add_argument("--fps", type=float, default=0.5)
parser.add_argument("--name", type=str,default="ckpt_92",help="name of the experiment")
parser.add_argument("--add_unknown", action='store_true')
parser.add_argument("--use_chatgpt", action='store_true')
parser.add_argument("--use_choices_for_info", action='store_true')
parser.add_argument("--use_gt_information", action='store_true')
parser.add_argument("--inference_text", action='store_true')
parser.add_argument("--use_gt_information_with_distraction", action='store_true')
parser.add_argument("--num_distraction", type=int, default=2)
parser.add_argument("--add_confidance_score", action='store_true')
parser.add_argument("--use_original_video", action='store_true')
parser.add_argument("--use_video_embedding", action='store_true')
parser.add_argument("--use_clips_for_info", action='store_true')
parser.add_argument("--use_GT_video", action='store_true')
parser.add_argument("--use_gt_summary", action='store_true')
parser.add_argument("--index_subtitles", action='store_true')
parser.add_argument("--index_subtitles_together", action='store_true')
parser.add_argument("--ask_the_question_early", action='store_true')
parser.add_argument("--clip_in_ask_early", action='store_true')
parser.add_argument("--summary_with_subtitles_only", action='store_true')
parser.add_argument("--use_coherent_description", action='store_true')
parser.add_argument("--v_sum_and_info", action='store_true')
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=100000, type=int)
parser.add_argument("--exp_name", type=str,default="",help="name of eval folder")
parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml")
parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth")
parser.add_argument("--add_subtitles", action='store_true')
parser.add_argument("--eval_opt", type=str, default='all')
parser.add_argument("--max_new_tokens", type=int, default=300)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--lora_r", type=int, default=64)
parser.add_argument("--lora_alpha", type=int, default=16)
parser.add_argument("--video_path", type=str, help="path to the video")
parser.add_argument("--use_openai_embedding",type=str2bool, default=False)
parser.add_argument("--dataset_videos_path", type=str, help="path to the dataset videos")
parser.add_argument("--annotation_json_folder", type=str, help="path to the annotation folder")
parser.add_argument("--options", nargs="+")
return parser.parse_args()
def get_movie_time(subtitle_path):
# read the subtitle file and detect the encoding
with open(subtitle_path, 'rb') as f:
result = chardet.detect(f.read())
subtitles = pysrt.open(subtitle_path, encoding=result['encoding'])
video_time=time_to_seconds(subtitles[-1].end)
return video_time
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose
import h5py
import torch
import os
def numerical_sort_key(filename):
base_name = os.path.splitext(filename)[0]
return int(base_name)
class MovieChatDataset(Dataset):
def __init__(self, dataset_path, annotation_path,fps, transform=None,start=0,end=100000):
self.dataset_path = dataset_path
self.annotation_path=annotation_path
self.transform = transform
self.movie_name = os.listdir(dataset_path)
self.movie_name = [file for file in self.movie_name if file != '.DS_Store']
self.fps = fps
self.len_clip = 45
self.start=start
self.end=end
def load_frames(self, movie_name):
filenames = sorted(os.listdir(os.path.join(self.dataset_path, movie_name)))
filenames.sort(key=numerical_sort_key)
# define torch tensor to store the frames of size(0,0,0)
data = []
for filename_number in tqdm(filenames,desc="Loading frames"):
file_path = os.path.join(self.dataset_path, movie_name, filename_number)
if not os.path.isfile(file_path):
print(f"Did not find file: {filename_number}")
try:
with h5py.File(file_path, 'r') as h5_file:
image_embeds=torch.tensor(h5_file[f"frames_{filename_number[:-3]}"][:])
image_embeds = image_embeds[:,1:,:] # remove the first token (CLS) (200,256,1408)
# concate each 4 neighbours image tokens
bs, pn, hs = image_embeds.shape
image_embeds = image_embeds.view(bs, int(pn/4), int(hs*4))
data.extend(image_embeds)
except Exception as e:
print(f"Failed to process {filename_number}: {e}")
frames=torch.stack(data)
return frames
def __len__(self):
return len(self.movie_name)
def _get_movie_questions(self,movie_annotations):
global_questions=movie_annotations['global']
local_questions=movie_annotations['breakpoint']
return global_questions,local_questions
def __getitem__(self, idx):
if self.start<=idx<self.end:
self.frames = self.load_frames(self.movie_name[idx])
movie_name=self.movie_name[idx]
with open(os.path.join(self.annotation_path,movie_name+".json"), 'r') as f:
movie_annotations = json.load(f)
global_questions,local_questions=self._get_movie_questions(movie_annotations)
sampling_value = int(movie_annotations['info']['fps']/self.fps)
clips_list=[]
current_clip=[]
for i in range(0,self.frames.shape[0], sampling_value):
current_clip.append(self.frames[i])
if len(current_clip) >= self.len_clip:
clips_list.append(torch.stack(current_clip))
current_clip=[]
if len(current_clip) > 0:
last_frame_current_clip = current_clip[-1]
while len(current_clip) < self.len_clip:
current_clip.append(last_frame_current_clip)
clips_list.append(torch.stack(current_clip))
return clips_list, movie_name,global_questions,local_questions
else:
return [], self.movie_name[idx],[],[]
class MovieChat (GoldFish_LV):
def __init__(self,args):
super().__init__(args)
self.args=args
self.save_long_videos_path = "new_workspace/clips_summary/movie_chat/"
if args.use_openai_embedding:
self.save_embedding_path = "new_workspace/open_ai_embedding/movie_chat/"
else:
self.save_embedding_path = "new_workspace/embedding/movie_chat/"
os.makedirs(self.save_long_videos_path, exist_ok=True)
os.makedirs(self.save_embedding_path, exist_ok=True)
self.max_sub_len=400
self.max_num_images=45
def _get_long_video_summaries(self,clips,save_path):
batch=[]
batch_instructions=[]
preds={}
clip_numbers=[]
max_caption_index=0
for i,clip_features in enumerate(clips):
if len(clip_features)!=self.max_num_images:
continue
batch.append(clip_features)
img_placeholder=""
for j in range(len(clip_features)):
img_placeholder+="<Img><ImageHere>"
instruction = img_placeholder + '\n' + self.summary_instruction
batch_instructions.append(instruction)
clip_numbers.append(i)
if len(batch)<args.batch_size:
continue
batch=torch.stack(batch)
batch_pred= self.run_images_features(batch,batch_instructions)
for j,pred in enumerate(batch_pred):
max_caption_index += 1
if pred !="":
preds[f'caption__clip_{str(clip_numbers[j]).zfill(2)}'] = pred
batch=[]
clip_numbers=[]
batch_instructions=[]
if len(batch)>0:
batch=torch.stack(batch)
batch_pred= self.run_images_features(batch,batch_instructions)
for j,pred in enumerate(batch_pred):
max_caption_index += 1
if pred !="":
preds[f'caption__clip_{str(clip_numbers[j]).zfill(2)}'] = pred
with open(save_path, 'w') as file:
json.dump(preds, file, indent=4)
return preds
def use_model_summary (self,qa_prompts,related_context_documents_list,related_context_keys_list,external_memory):
related_context_documents_text_list=[]
for related_context_documents,related_context_keys in zip(related_context_documents_list,related_context_keys_list):
related_information=""
most_related_clips=self.get_most_related_clips_index(related_context_keys,external_memory)
for clip_name in most_related_clips:
general_sum=""
clip_name=str(clip_name).zfill(2)
for key in external_memory.documents.keys():
if clip_name in key and 'caption' in key:
general_sum="Clip Summary: "+external_memory.documents[key]
break
related_information+=f"{general_sum}\n"
related_context_documents_text_list.append(related_information)
if args.use_chatgpt :
batch_pred=self.inference_RAG_chatGPT(qa_prompts,related_context_documents_text_list)
else:
batch_pred=self.inference_RAG(qa_prompts,related_context_documents_text_list)
return batch_pred, related_context_documents_text_list
def answer_movie_questions_RAG(self,qa_list,information_RAG_path,embedding_path,q_type):
if q_type=='local':
external_memory=MemoryIndex(args.neighbours, use_openai=self.args.use_openai_embedding)
else:
external_memory=MemoryIndex(args.neighbours_global, use_openai=self.args.use_openai_embedding)
if os.path.exists(embedding_path):
external_memory.load_embeddings_from_pkl(embedding_path)
else:
external_memory.load_documents_from_json(information_RAG_path,embedding_path)
# get the most similar context from the external memory to this instruction
related_context_documents_list=[]
related_context_keys_list=[]
total_batch_pred=[]
related_text=[]
qa_prompts=[]
for qa in qa_list:
related_context_documents,related_context_keys = external_memory.search_by_similarity(qa['question'])
related_context_documents_list.append(related_context_documents)
related_context_keys_list.append(related_context_keys)
prompt=self.prepare_prompt(qa)
qa_prompts.append(prompt)
if args.use_clips_for_info:
batch_pred,related_context_keys_list=self.use_clips_for_info(qa_list,related_context_keys_list,external_memory)
total_batch_pred.extend(batch_pred)
related_text.extend(related_context_keys_list)
else:
batch_pred, related_context_documents_text_list=self.use_model_summary (qa_prompts,
related_context_documents_list,related_context_keys_list,external_memory)
total_batch_pred.extend(batch_pred)
related_text.extend(related_context_documents_text_list)
assert len(total_batch_pred)==len(qa_list)
assert len(total_batch_pred)==len(related_text)
return total_batch_pred, related_text
def get_most_related_clips_index(self,related_context_keys,external_memory):
most_related_clips_index=[]
for context_key in related_context_keys:
# loop over memory keys to get the context key index
for i,key in enumerate(external_memory.documents.keys()):
if context_key in key:
most_related_clips_index.append(i)
break
return most_related_clips_index
def clip_inference(self,clips_idx,prompts):
setup_seeds(seed)
images_batch, instructions_batch = [], []
for clip_idx, prompt in zip(clips_idx, prompts):
clip_features=self.video_clips[clip_idx]
img_placeholder=""
for j in range(len(clip_features)):
img_placeholder+='<Img><ImageHere>'
instruction = img_placeholder + '\n' + prompt
images_batch.append(clip_features)
instructions_batch.append(instruction)
# run inference for the batch
images_batch=torch.stack(images_batch)
batch_pred= self.run_images_features(images_batch,instructions_batch)
return batch_pred
def prepare_prompt(self,qa):
prompt=qa["question"]
return prompt
def use_clips_for_info(self,qa_list,related_context_keys_list,external_memory):
total_batch_pred=[]
questions=[]
related_information_list=[]
related_context_keys_list_new=[]
for qa,related_context_keys in zip(qa_list,related_context_keys_list):
most_related_clips_index=self.get_most_related_clips_index(related_context_keys,external_memory)
question=qa['question']
prompt=f"From this video extract the related information to This question and provide an explaination for your answer and If you can't find any related information, say 'I DON'T KNOW' as option 5 because maybe the questoin is not related to the video content.\n the question is :\n {question}\n your answer :"
batch_inference=[]
all_info=[]
for clip_idx in most_related_clips_index:
batch_inference.append(clip_idx)
if len(batch_inference)<args.batch_size:
continue
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference)))
batch_inference=[]
if len(batch_inference)>0:
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference)))
# all_info=self.clip_inference(most_related_clips_index,[prompt]*len(most_related_clips_index))
related_information=""
for info,clip_name in zip(all_info,most_related_clips_index):
general_sum=""
clip_name=str(clip_name).zfill(2)
for key in external_memory.documents.keys():
if clip_name in key and 'caption' in key:
general_sum="Clip Summary: "+external_memory.documents[key]
if args.v_sum_and_info:
related_information+=f"{general_sum},question_related_information: {info}\n"
else:
related_information+=f"question_related_information: {info}\n"
questions.append(question)
related_information_list.append(related_information)
related_context_keys.append(related_information)
related_context_keys_list_new.append(related_context_keys)
if len(questions)< args.batch_size:
continue
setup_seeds(seed)
if args.use_chatgpt :
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list)
else:
batch_pred=self.inference_RAG(questions, related_information_list)
for pred in batch_pred:
total_batch_pred.append(pred)
questions=[]
related_information_list=[]
if len(questions)>0:
setup_seeds(seed)
if args.use_chatgpt :
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list)
else:
batch_pred=self.inference_RAG(questions, related_information_list)
for pred in batch_pred:
total_batch_pred.append(pred)
return total_batch_pred,related_context_keys_list_new
def define_save_name(self):
save_name="subtitles" if args.index_subtitles else "no_subtitles"
save_name="subtitles_together" if args.index_subtitles_together else save_name
save_name="summary_with_subtitles_only" if args.summary_with_subtitles_only else save_name
save_name+="_unknown" if args.add_unknown else ""
save_name+="_clips_for_info" if args.use_clips_for_info else ""
save_name+="_chatgpt" if args.use_chatgpt else ""
save_name+="_choices_for_info" if args.use_choices_for_info else ""
save_name+="_v_sum_and_info" if args.v_sum_and_info else ""
save_name+='fps_'+str(args.fps)
save_dir=f"new_workspace/results/moviechat/{args.exp_name}/{save_name}_{args.neighbours_global}_neighbours"
os.makedirs(save_dir, exist_ok=True)
return save_dir
def eval_moviechat(self):
start=args.start
end=args.end
dataset_path = args.dataset_videos_path
annotation_json_folder=args.annotation_json_folder
dataset = MovieChatDataset(dataset_path,annotation_json_folder, fps=args.fps,start=start,end=end)
# dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
full_questions_result=[]
save_dir=self.define_save_name()
for i,(clips ,video_name,global_questions,local_questions) in enumerate(dataset):
# code here
if start<=i < end:
print("video_name",video_name)
self.video_clips=clips
self.video_name=video_name
file_path=os.path.join(self.save_long_videos_path,self.video_name+f"_fps{args.fps}.json")
embedding_path=os.path.join(self.save_embedding_path,self.video_name+f"_fps{args.fps}.pkl")
if os.path.exists(file_path):
print("Already processed")
else:
self._get_long_video_summaries(clips,file_path)
batch_questions=[]
for qa in global_questions:
batch_questions.append(qa)
if len(batch_questions)<args.batch_size:
continue
model_answers, related_text=self.answer_movie_questions_RAG(batch_questions,file_path,embedding_path,q_type='global')
for qa,ans in zip(batch_questions,model_answers):
qa.update({'pred':ans})
qa['Q']=qa['question']
qa['A']=qa['answer']
qa.pop('question', None)
qa.pop('answer', None)
batch_questions=[]
if len(batch_questions)>0:
model_answers, related_text=self.answer_movie_questions_RAG(batch_questions,file_path,embedding_path,q_type='global')
for qa,ans in zip(batch_questions,model_answers):
qa.update({'pred':ans})
qa['Q']=qa['question']
qa['A']=qa['answer']
qa.pop('question', None)
qa.pop('answer', None)
full_questions_result.extend(global_questions)
print(f"Finished {i} out of {len(dataset)}")
# save the results
with open(f"{save_dir}/{self.video_name}.json", 'w') as file:
# json.dump(global_questions+local_questions, file, indent=4)
json.dump(global_questions, file, indent=4)
with open(f"{save_dir}/full_pred_{start}_{end}.json", 'w') as fp:
json.dump(full_questions_result, fp)
args=get_arguments()
def setup_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
import yaml
# read this file test_configs/llama2_test_config.yaml
with open('test_configs/llama2_test_config.yaml') as file:
config = yaml.load(file, Loader=yaml.FullLoader)
seed=config['run']['seed']
print("seed",seed)
if __name__ == "__main__":
setup_seeds(seed)
llama_vid_eval=MovieChat(args)
llama_vid_eval.eval_moviechat()