Spaces:
Running
Running
import sys | |
import os | |
project_dir = os.getcwd() | |
sys.path.append(project_dir) | |
import json | |
from tqdm import tqdm | |
from goldfish_lv import GoldFish_LV,split_subtitles,time_to_seconds | |
import argparse | |
import json | |
import argparse | |
import torch | |
from tqdm import tqdm | |
# from openai import OpenAI | |
from minigpt4.common.eval_utils import init_model | |
from minigpt4.conversation.conversation import CONV_VISION | |
from index import MemoryIndex | |
import pysrt | |
import chardet | |
import torch | |
import random | |
import numpy as np | |
import torch.backends.cudnn as cudnn | |
def str2bool(v): | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ('yes', 'true', 't', 'y', '1'): | |
return True | |
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |
return False | |
else: | |
raise argparse.ArgumentTypeError('Boolean value expected.') | |
def get_arguments(): | |
parser = argparse.ArgumentParser(description="Inference parameters") | |
parser.add_argument("--neighbours", type=int, default=-1) | |
parser.add_argument("--neighbours_global", type=int, default=-1) | |
parser.add_argument("--fps", type=float, default=0.5) | |
parser.add_argument("--name", type=str,default="ckpt_92",help="name of the experiment") | |
parser.add_argument("--add_unknown", action='store_true') | |
parser.add_argument("--use_chatgpt", action='store_true') | |
parser.add_argument("--use_choices_for_info", action='store_true') | |
parser.add_argument("--use_gt_information", action='store_true') | |
parser.add_argument("--inference_text", action='store_true') | |
parser.add_argument("--use_gt_information_with_distraction", action='store_true') | |
parser.add_argument("--num_distraction", type=int, default=2) | |
parser.add_argument("--add_confidance_score", action='store_true') | |
parser.add_argument("--use_original_video", action='store_true') | |
parser.add_argument("--use_video_embedding", action='store_true') | |
parser.add_argument("--use_clips_for_info", action='store_true') | |
parser.add_argument("--use_GT_video", action='store_true') | |
parser.add_argument("--use_gt_summary", action='store_true') | |
parser.add_argument("--index_subtitles", action='store_true') | |
parser.add_argument("--index_subtitles_together", action='store_true') | |
parser.add_argument("--ask_the_question_early", action='store_true') | |
parser.add_argument("--clip_in_ask_early", action='store_true') | |
parser.add_argument("--summary_with_subtitles_only", action='store_true') | |
parser.add_argument("--use_coherent_description", action='store_true') | |
parser.add_argument("--v_sum_and_info", action='store_true') | |
parser.add_argument("--start", default=0, type=int) | |
parser.add_argument("--end", default=100000, type=int) | |
parser.add_argument("--exp_name", type=str,default="",help="name of eval folder") | |
parser.add_argument("--cfg-path", default="test_configs/llama2_test_config.yaml") | |
parser.add_argument("--ckpt", type=str, default="checkpoints/video_llama_checkpoint_last.pth") | |
parser.add_argument("--add_subtitles", action='store_true') | |
parser.add_argument("--eval_opt", type=str, default='all') | |
parser.add_argument("--max_new_tokens", type=int, default=300) | |
parser.add_argument("--batch_size", type=int, default=8) | |
parser.add_argument("--lora_r", type=int, default=64) | |
parser.add_argument("--lora_alpha", type=int, default=16) | |
parser.add_argument("--video_path", type=str, help="path to the video") | |
parser.add_argument("--use_openai_embedding",type=str2bool, default=False) | |
parser.add_argument("--dataset_videos_path", type=str, help="path to the dataset videos") | |
parser.add_argument("--annotation_json_folder", type=str, help="path to the annotation folder") | |
parser.add_argument("--options", nargs="+") | |
return parser.parse_args() | |
def get_movie_time(subtitle_path): | |
# read the subtitle file and detect the encoding | |
with open(subtitle_path, 'rb') as f: | |
result = chardet.detect(f.read()) | |
subtitles = pysrt.open(subtitle_path, encoding=result['encoding']) | |
video_time=time_to_seconds(subtitles[-1].end) | |
return video_time | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision.transforms import Compose | |
import h5py | |
import torch | |
import os | |
def numerical_sort_key(filename): | |
base_name = os.path.splitext(filename)[0] | |
return int(base_name) | |
class MovieChatDataset(Dataset): | |
def __init__(self, dataset_path, annotation_path,fps, transform=None,start=0,end=100000): | |
self.dataset_path = dataset_path | |
self.annotation_path=annotation_path | |
self.transform = transform | |
self.movie_name = os.listdir(dataset_path) | |
self.movie_name = [file for file in self.movie_name if file != '.DS_Store'] | |
self.fps = fps | |
self.len_clip = 45 | |
self.start=start | |
self.end=end | |
def load_frames(self, movie_name): | |
filenames = sorted(os.listdir(os.path.join(self.dataset_path, movie_name))) | |
filenames.sort(key=numerical_sort_key) | |
# define torch tensor to store the frames of size(0,0,0) | |
data = [] | |
for filename_number in tqdm(filenames,desc="Loading frames"): | |
file_path = os.path.join(self.dataset_path, movie_name, filename_number) | |
if not os.path.isfile(file_path): | |
print(f"Did not find file: {filename_number}") | |
try: | |
with h5py.File(file_path, 'r') as h5_file: | |
image_embeds=torch.tensor(h5_file[f"frames_{filename_number[:-3]}"][:]) | |
image_embeds = image_embeds[:,1:,:] # remove the first token (CLS) (200,256,1408) | |
# concate each 4 neighbours image tokens | |
bs, pn, hs = image_embeds.shape | |
image_embeds = image_embeds.view(bs, int(pn/4), int(hs*4)) | |
data.extend(image_embeds) | |
except Exception as e: | |
print(f"Failed to process {filename_number}: {e}") | |
frames=torch.stack(data) | |
return frames | |
def __len__(self): | |
return len(self.movie_name) | |
def _get_movie_questions(self,movie_annotations): | |
global_questions=movie_annotations['global'] | |
local_questions=movie_annotations['breakpoint'] | |
return global_questions,local_questions | |
def __getitem__(self, idx): | |
if self.start<=idx<self.end: | |
self.frames = self.load_frames(self.movie_name[idx]) | |
movie_name=self.movie_name[idx] | |
with open(os.path.join(self.annotation_path,movie_name+".json"), 'r') as f: | |
movie_annotations = json.load(f) | |
global_questions,local_questions=self._get_movie_questions(movie_annotations) | |
sampling_value = int(movie_annotations['info']['fps']/self.fps) | |
clips_list=[] | |
current_clip=[] | |
for i in range(0,self.frames.shape[0], sampling_value): | |
current_clip.append(self.frames[i]) | |
if len(current_clip) >= self.len_clip: | |
clips_list.append(torch.stack(current_clip)) | |
current_clip=[] | |
if len(current_clip) > 0: | |
last_frame_current_clip = current_clip[-1] | |
while len(current_clip) < self.len_clip: | |
current_clip.append(last_frame_current_clip) | |
clips_list.append(torch.stack(current_clip)) | |
return clips_list, movie_name,global_questions,local_questions | |
else: | |
return [], self.movie_name[idx],[],[] | |
class MovieChat (GoldFish_LV): | |
def __init__(self,args): | |
super().__init__(args) | |
self.args=args | |
self.save_long_videos_path = "new_workspace/clips_summary/movie_chat/" | |
if args.use_openai_embedding: | |
self.save_embedding_path = "new_workspace/open_ai_embedding/movie_chat/" | |
else: | |
self.save_embedding_path = "new_workspace/embedding/movie_chat/" | |
os.makedirs(self.save_long_videos_path, exist_ok=True) | |
os.makedirs(self.save_embedding_path, exist_ok=True) | |
self.max_sub_len=400 | |
self.max_num_images=45 | |
def _get_long_video_summaries(self,clips,save_path): | |
batch=[] | |
batch_instructions=[] | |
preds={} | |
clip_numbers=[] | |
max_caption_index=0 | |
for i,clip_features in enumerate(clips): | |
if len(clip_features)!=self.max_num_images: | |
continue | |
batch.append(clip_features) | |
img_placeholder="" | |
for j in range(len(clip_features)): | |
img_placeholder+="<Img><ImageHere>" | |
instruction = img_placeholder + '\n' + self.summary_instruction | |
batch_instructions.append(instruction) | |
clip_numbers.append(i) | |
if len(batch)<args.batch_size: | |
continue | |
batch=torch.stack(batch) | |
batch_pred= self.run_images_features(batch,batch_instructions) | |
for j,pred in enumerate(batch_pred): | |
max_caption_index += 1 | |
if pred !="": | |
preds[f'caption__clip_{str(clip_numbers[j]).zfill(2)}'] = pred | |
batch=[] | |
clip_numbers=[] | |
batch_instructions=[] | |
if len(batch)>0: | |
batch=torch.stack(batch) | |
batch_pred= self.run_images_features(batch,batch_instructions) | |
for j,pred in enumerate(batch_pred): | |
max_caption_index += 1 | |
if pred !="": | |
preds[f'caption__clip_{str(clip_numbers[j]).zfill(2)}'] = pred | |
with open(save_path, 'w') as file: | |
json.dump(preds, file, indent=4) | |
return preds | |
def use_model_summary (self,qa_prompts,related_context_documents_list,related_context_keys_list,external_memory): | |
related_context_documents_text_list=[] | |
for related_context_documents,related_context_keys in zip(related_context_documents_list,related_context_keys_list): | |
related_information="" | |
most_related_clips=self.get_most_related_clips_index(related_context_keys,external_memory) | |
for clip_name in most_related_clips: | |
general_sum="" | |
clip_name=str(clip_name).zfill(2) | |
for key in external_memory.documents.keys(): | |
if clip_name in key and 'caption' in key: | |
general_sum="Clip Summary: "+external_memory.documents[key] | |
break | |
related_information+=f"{general_sum}\n" | |
related_context_documents_text_list.append(related_information) | |
if args.use_chatgpt : | |
batch_pred=self.inference_RAG_chatGPT(qa_prompts,related_context_documents_text_list) | |
else: | |
batch_pred=self.inference_RAG(qa_prompts,related_context_documents_text_list) | |
return batch_pred, related_context_documents_text_list | |
def answer_movie_questions_RAG(self,qa_list,information_RAG_path,embedding_path,q_type): | |
if q_type=='local': | |
external_memory=MemoryIndex(args.neighbours, use_openai=self.args.use_openai_embedding) | |
else: | |
external_memory=MemoryIndex(args.neighbours_global, use_openai=self.args.use_openai_embedding) | |
if os.path.exists(embedding_path): | |
external_memory.load_embeddings_from_pkl(embedding_path) | |
else: | |
external_memory.load_documents_from_json(information_RAG_path,embedding_path) | |
# get the most similar context from the external memory to this instruction | |
related_context_documents_list=[] | |
related_context_keys_list=[] | |
total_batch_pred=[] | |
related_text=[] | |
qa_prompts=[] | |
for qa in qa_list: | |
related_context_documents,related_context_keys = external_memory.search_by_similarity(qa['question']) | |
related_context_documents_list.append(related_context_documents) | |
related_context_keys_list.append(related_context_keys) | |
prompt=self.prepare_prompt(qa) | |
qa_prompts.append(prompt) | |
if args.use_clips_for_info: | |
batch_pred,related_context_keys_list=self.use_clips_for_info(qa_list,related_context_keys_list,external_memory) | |
total_batch_pred.extend(batch_pred) | |
related_text.extend(related_context_keys_list) | |
else: | |
batch_pred, related_context_documents_text_list=self.use_model_summary (qa_prompts, | |
related_context_documents_list,related_context_keys_list,external_memory) | |
total_batch_pred.extend(batch_pred) | |
related_text.extend(related_context_documents_text_list) | |
assert len(total_batch_pred)==len(qa_list) | |
assert len(total_batch_pred)==len(related_text) | |
return total_batch_pred, related_text | |
def get_most_related_clips_index(self,related_context_keys,external_memory): | |
most_related_clips_index=[] | |
for context_key in related_context_keys: | |
# loop over memory keys to get the context key index | |
for i,key in enumerate(external_memory.documents.keys()): | |
if context_key in key: | |
most_related_clips_index.append(i) | |
break | |
return most_related_clips_index | |
def clip_inference(self,clips_idx,prompts): | |
setup_seeds(seed) | |
images_batch, instructions_batch = [], [] | |
for clip_idx, prompt in zip(clips_idx, prompts): | |
clip_features=self.video_clips[clip_idx] | |
img_placeholder="" | |
for j in range(len(clip_features)): | |
img_placeholder+='<Img><ImageHere>' | |
instruction = img_placeholder + '\n' + prompt | |
images_batch.append(clip_features) | |
instructions_batch.append(instruction) | |
# run inference for the batch | |
images_batch=torch.stack(images_batch) | |
batch_pred= self.run_images_features(images_batch,instructions_batch) | |
return batch_pred | |
def prepare_prompt(self,qa): | |
prompt=qa["question"] | |
return prompt | |
def use_clips_for_info(self,qa_list,related_context_keys_list,external_memory): | |
total_batch_pred=[] | |
questions=[] | |
related_information_list=[] | |
related_context_keys_list_new=[] | |
for qa,related_context_keys in zip(qa_list,related_context_keys_list): | |
most_related_clips_index=self.get_most_related_clips_index(related_context_keys,external_memory) | |
question=qa['question'] | |
prompt=f"From this video extract the related information to This question and provide an explaination for your answer and If you can't find any related information, say 'I DON'T KNOW' as option 5 because maybe the questoin is not related to the video content.\n the question is :\n {question}\n your answer :" | |
batch_inference=[] | |
all_info=[] | |
for clip_idx in most_related_clips_index: | |
batch_inference.append(clip_idx) | |
if len(batch_inference)<args.batch_size: | |
continue | |
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference))) | |
batch_inference=[] | |
if len(batch_inference)>0: | |
all_info.extend(self.clip_inference(batch_inference,[prompt]*len(batch_inference))) | |
# all_info=self.clip_inference(most_related_clips_index,[prompt]*len(most_related_clips_index)) | |
related_information="" | |
for info,clip_name in zip(all_info,most_related_clips_index): | |
general_sum="" | |
clip_name=str(clip_name).zfill(2) | |
for key in external_memory.documents.keys(): | |
if clip_name in key and 'caption' in key: | |
general_sum="Clip Summary: "+external_memory.documents[key] | |
if args.v_sum_and_info: | |
related_information+=f"{general_sum},question_related_information: {info}\n" | |
else: | |
related_information+=f"question_related_information: {info}\n" | |
questions.append(question) | |
related_information_list.append(related_information) | |
related_context_keys.append(related_information) | |
related_context_keys_list_new.append(related_context_keys) | |
if len(questions)< args.batch_size: | |
continue | |
setup_seeds(seed) | |
if args.use_chatgpt : | |
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list) | |
else: | |
batch_pred=self.inference_RAG(questions, related_information_list) | |
for pred in batch_pred: | |
total_batch_pred.append(pred) | |
questions=[] | |
related_information_list=[] | |
if len(questions)>0: | |
setup_seeds(seed) | |
if args.use_chatgpt : | |
batch_pred=self.inference_RAG_chatGPT(questions, related_information_list) | |
else: | |
batch_pred=self.inference_RAG(questions, related_information_list) | |
for pred in batch_pred: | |
total_batch_pred.append(pred) | |
return total_batch_pred,related_context_keys_list_new | |
def define_save_name(self): | |
save_name="subtitles" if args.index_subtitles else "no_subtitles" | |
save_name="subtitles_together" if args.index_subtitles_together else save_name | |
save_name="summary_with_subtitles_only" if args.summary_with_subtitles_only else save_name | |
save_name+="_unknown" if args.add_unknown else "" | |
save_name+="_clips_for_info" if args.use_clips_for_info else "" | |
save_name+="_chatgpt" if args.use_chatgpt else "" | |
save_name+="_choices_for_info" if args.use_choices_for_info else "" | |
save_name+="_v_sum_and_info" if args.v_sum_and_info else "" | |
save_name+='fps_'+str(args.fps) | |
save_dir=f"new_workspace/results/moviechat/{args.exp_name}/{save_name}_{args.neighbours_global}_neighbours" | |
os.makedirs(save_dir, exist_ok=True) | |
return save_dir | |
def eval_moviechat(self): | |
start=args.start | |
end=args.end | |
dataset_path = args.dataset_videos_path | |
annotation_json_folder=args.annotation_json_folder | |
dataset = MovieChatDataset(dataset_path,annotation_json_folder, fps=args.fps,start=start,end=end) | |
# dataloader = DataLoader(dataset, batch_size=1, shuffle=False) | |
full_questions_result=[] | |
save_dir=self.define_save_name() | |
for i,(clips ,video_name,global_questions,local_questions) in enumerate(dataset): | |
# code here | |
if start<=i < end: | |
print("video_name",video_name) | |
self.video_clips=clips | |
self.video_name=video_name | |
file_path=os.path.join(self.save_long_videos_path,self.video_name+f"_fps{args.fps}.json") | |
embedding_path=os.path.join(self.save_embedding_path,self.video_name+f"_fps{args.fps}.pkl") | |
if os.path.exists(file_path): | |
print("Already processed") | |
else: | |
self._get_long_video_summaries(clips,file_path) | |
batch_questions=[] | |
for qa in global_questions: | |
batch_questions.append(qa) | |
if len(batch_questions)<args.batch_size: | |
continue | |
model_answers, related_text=self.answer_movie_questions_RAG(batch_questions,file_path,embedding_path,q_type='global') | |
for qa,ans in zip(batch_questions,model_answers): | |
qa.update({'pred':ans}) | |
qa['Q']=qa['question'] | |
qa['A']=qa['answer'] | |
qa.pop('question', None) | |
qa.pop('answer', None) | |
batch_questions=[] | |
if len(batch_questions)>0: | |
model_answers, related_text=self.answer_movie_questions_RAG(batch_questions,file_path,embedding_path,q_type='global') | |
for qa,ans in zip(batch_questions,model_answers): | |
qa.update({'pred':ans}) | |
qa['Q']=qa['question'] | |
qa['A']=qa['answer'] | |
qa.pop('question', None) | |
qa.pop('answer', None) | |
full_questions_result.extend(global_questions) | |
print(f"Finished {i} out of {len(dataset)}") | |
# save the results | |
with open(f"{save_dir}/{self.video_name}.json", 'w') as file: | |
# json.dump(global_questions+local_questions, file, indent=4) | |
json.dump(global_questions, file, indent=4) | |
with open(f"{save_dir}/full_pred_{start}_{end}.json", 'w') as fp: | |
json.dump(full_questions_result, fp) | |
args=get_arguments() | |
def setup_seeds(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
import yaml | |
# read this file test_configs/llama2_test_config.yaml | |
with open('test_configs/llama2_test_config.yaml') as file: | |
config = yaml.load(file, Loader=yaml.FullLoader) | |
seed=config['run']['seed'] | |
print("seed",seed) | |
if __name__ == "__main__": | |
setup_seeds(seed) | |
llama_vid_eval=MovieChat(args) | |
llama_vid_eval.eval_moviechat() | |