Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import unittest | |
| import torch | |
| from torch.autograd import gradcheck | |
| from tensormask.layers.swap_align2nat import SwapAlign2Nat | |
| class SwapAlign2NatTest(unittest.TestCase): | |
| def test_swap_align2nat_gradcheck_cuda(self): | |
| dtype = torch.float64 | |
| device = torch.device("cuda") | |
| m = SwapAlign2Nat(2).to(dtype=dtype, device=device) | |
| x = torch.rand(2, 4, 10, 10, dtype=dtype, device=device, requires_grad=True) | |
| self.assertTrue(gradcheck(m, x), "gradcheck failed for SwapAlign2Nat CUDA") | |
| def _swap_align2nat(self, tensor, lambda_val): | |
| """ | |
| The basic setup for testing Swap_Align | |
| """ | |
| op = SwapAlign2Nat(lambda_val, pad_val=0.0) | |
| input = torch.from_numpy(tensor[None, :, :, :].astype("float32")) | |
| output = op.forward(input.cuda()).cpu().numpy() | |
| return output[0] | |
| if __name__ == "__main__": | |
| unittest.main() | |