Spaces:
Runtime error
Runtime error
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------ | |
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA) | |
# Copyright 2024 Yanwei Li | |
# ------------------------------------------------------------------------ | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
try: | |
from transformers import AutoConfig, AutoModelForCausalLM, \ | |
GemmaConfig, GemmaModel, GemmaForCausalLM | |
except: | |
print("New model not imported. Try to update Transformers to 4.38.0 or later.") | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from transformers.generation.utils import GenerateOutput | |
from transformers.generation.utils import logging | |
from ..mini_gemini_arch import MiniGeminiMetaModel, MiniGeminiMetaForCausalLM | |
logger = logging.get_logger(__name__) | |
class MiniGeminiConfig(GemmaConfig): | |
model_type = "mini_gemini_gemma" | |
class MiniGeminiGemmaModel(MiniGeminiMetaModel, GemmaModel): | |
config_class = MiniGeminiConfig | |
def __init__(self, config: GemmaConfig): | |
super(MiniGeminiGemmaModel, self).__init__(config) | |
class MiniGeminiGemmaForCausalLM(GemmaForCausalLM, MiniGeminiMetaForCausalLM): | |
config_class = MiniGeminiConfig | |
def __init__(self, config): | |
super(GemmaForCausalLM, self).__init__(config) | |
self.model = MiniGeminiGemmaModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
images_aux: Optional[torch.FloatTensor] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if inputs_embeds is None: | |
( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
) = self.prepare_inputs_labels_for_multimodal( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
labels, | |
images, | |
images_aux | |
) | |
return super().forward( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
labels=labels, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict | |
) | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
images: Optional[torch.Tensor] = None, | |
images_aux: Optional[torch.FloatTensor] = None, | |
**kwargs, | |
) -> Union[GenerateOutput, torch.LongTensor]: | |
position_ids = kwargs.pop("position_ids", None) | |
attention_mask = kwargs.pop("attention_mask", None) | |
if "inputs_embeds" in kwargs: | |
raise NotImplementedError("`inputs_embeds` is not supported") | |
if images is not None: | |
( | |
inputs, | |
position_ids, | |
attention_mask, | |
_, | |
inputs_embeds, | |
_ | |
) = self.prepare_inputs_labels_for_multimodal( | |
inputs, | |
position_ids, | |
attention_mask, | |
None, | |
None, | |
images, | |
images_aux | |
) | |
else: | |
inputs_embeds = self.get_model().embed_tokens(inputs) | |
return super().generate( | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
**kwargs | |
) | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
images = kwargs.pop("images", None) | |
images_aux = kwargs.pop("images_aux", None) | |
_inputs = super().prepare_inputs_for_generation( | |
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs | |
) | |
if images is not None: | |
_inputs['images'] = images | |
if images_aux is not None: | |
_inputs['images_aux'] = images_aux | |
return _inputs | |
AutoConfig.register("mini_gemini_gemma", MiniGeminiConfig) | |
AutoModelForCausalLM.register(MiniGeminiConfig, MiniGeminiGemmaForCausalLM) |