MGM / minigemini /eval /model_vqa_mmbench.py
wcy1122's picture
update code
35153f6
raw
history blame
9.76 kB
import argparse
import torch
import os
import json
import pandas as pd
from tqdm import tqdm
import shortuuid
from minigemini.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from minigemini.conversation import conv_templates, SeparatorStyle
from minigemini.model.builder import load_pretrained_model
from minigemini.utils import disable_torch_init
from minigemini.mm_utils import tokenizer_image_token, process_images, load_image_from_base64, get_model_name_from_path
from PIL import Image
import math
all_options = ['A', 'B', 'C', 'D']
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def is_none(value):
if value is None:
return True
if type(value) is float and math.isnan(value):
return True
if type(value) is str and value.lower() == 'nan':
return True
if type(value) is str and value.lower() == 'none':
return True
return False
def get_options(row, options):
parsed_options = []
for option in options:
option_value = row[option]
if is_none(option_value):
break
parsed_options.append(option_value)
return parsed_options
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
questions = pd.read_table(os.path.expanduser(args.question_file))
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
args.conv_mode = args.conv_mode + '_mmtag'
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
for index, row in tqdm(questions.iterrows(), total=len(questions)):
options = get_options(row, all_options)
cur_option_char = all_options[:len(options)]
if args.all_rounds:
num_rounds = len(options)
else:
num_rounds = 1
for round_idx in range(num_rounds):
idx = row['index']
question = row['question']
hint = row['hint']
image = load_image_from_base64(row['image'])
if not is_none(hint):
question = hint + '\n' + question
for option_char, option in zip(all_options[:len(options)], options):
question = question + '\n' + option_char + '. ' + option
qs = cur_prompt = question
if hasattr(model, "update_prompt"):
model.update_prompt([[cur_prompt]])
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
if args.single_pred_prompt:
if args.lang == 'cn':
qs = qs + '\n' + "请直接回答选项字母。"
else:
qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
if hasattr(model.config, 'image_size_aux'):
if not hasattr(image_processor, 'image_size_raw'):
image_processor.image_size_raw = image_processor.crop_size.copy()
image_processor.crop_size['height'] = model.config.image_size_aux
image_processor.crop_size['width'] = model.config.image_size_aux
image_processor.size['shortest_edge'] = model.config.image_size_aux
image_tensor = process_images([image], image_processor, model.config)[0]
image_grid = getattr(model.config, 'image_grid', 1)
if hasattr(model.config, 'image_size_aux'):
raw_shape = [image_processor.image_size_raw['height'] * image_grid,
image_processor.image_size_raw['width'] * image_grid]
image_tensor_aux = image_tensor
image_tensor = torch.nn.functional.interpolate(image_tensor[None],
size=raw_shape,
mode='bilinear',
align_corners=False)[0]
else:
image_tensor_aux = []
if image_grid >= 2:
raw_image = image_tensor.reshape(3,
image_grid,
image_processor.image_size_raw['height'],
image_grid,
image_processor.image_size_raw['width'])
raw_image = raw_image.permute(1, 3, 0, 2, 4)
raw_image = raw_image.reshape(-1, 3,
image_processor.image_size_raw['height'],
image_processor.image_size_raw['width'])
if getattr(model.config, 'image_global', False):
global_image = image_tensor
if len(global_image.shape) == 3:
global_image = global_image[None]
global_image = torch.nn.functional.interpolate(global_image,
size=[image_processor.image_size_raw['height'],
image_processor.image_size_raw['width']],
mode='bilinear',
align_corners=False)
# [image_crops, image_global]
raw_image = torch.cat([raw_image, global_image], dim=0)
image_tensor = raw_image.contiguous()
images = image_tensor[None].to(dtype=model.dtype, device='cuda', non_blocking=True)
images_aux = image_tensor_aux[None].to(dtype=model.dtype, device='cuda', non_blocking=True) if len(image_tensor_aux)>0 else None
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images,
images_aux=images_aux,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
# no_repeat_ngram_size=3,
max_new_tokens=1024,
bos_token_id=tokenizer.bos_token_id, # Begin of sequence token
eos_token_id=tokenizer.eos_token_id, # End of sequence token
pad_token_id=tokenizer.pad_token_id, # Pad token
use_cache=True)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"round_id": round_idx,
"prompt": cur_prompt,
"text": outputs,
"options": options,
"option_char": cur_option_char,
"answer_id": ans_id,
"model_id": model_name,
"metadata": {}}) + "\n")
ans_file.flush()
# rotate options
options = options[1:] + options[:1]
cur_option_char = cur_option_char[1:] + cur_option_char[:1]
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v1")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--all-rounds", action="store_true")
parser.add_argument("--single-pred-prompt", action="store_true")
parser.add_argument("--lang", type=str, default="en")
args = parser.parse_args()
eval_model(args)