Spaces:
Sleeping
Sleeping
new changes.
Browse files- app.py +85 -1
- myTextEmbedding.py +0 -1
- requirements.txt +0 -1
app.py
CHANGED
|
@@ -1,6 +1,90 @@
|
|
| 1 |
-
from myTextEmbedding import *
|
| 2 |
import gradio as gr
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
def generate_chunk_emb(m, chunk_data):
|
| 5 |
with torch.no_grad():
|
| 6 |
emb = m(chunk_data, device = "cpu")
|
|
|
|
| 1 |
+
#from myTextEmbedding import *
|
| 2 |
import gradio as gr
|
| 3 |
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch import tensor
|
| 7 |
+
from transformers import BertModel, BertTokenizer
|
| 8 |
+
#import gzip
|
| 9 |
+
#import pandas as pd
|
| 10 |
+
import requests
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class EmbeddingModel(nn.Module):
|
| 14 |
+
def __init__(self, bertName = "bert-base-uncased"): # other bert models can also be supported
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.bertName = bertName
|
| 17 |
+
# use BERT model
|
| 18 |
+
self.tokenizer = BertTokenizer.from_pretrained(self.bertName)
|
| 19 |
+
self.model = BertModel.from_pretrained(self.bertName)
|
| 20 |
+
|
| 21 |
+
def forward(self, s, device = "cuda"):
|
| 22 |
+
# get tokens, which also include attention_mask
|
| 23 |
+
tokens = self.tokenizer(s, return_tensors='pt', padding = "max_length", truncation = True, max_length = 256).to(device)
|
| 24 |
+
|
| 25 |
+
# get token embeddings
|
| 26 |
+
output = self.model(**tokens)
|
| 27 |
+
tokens_embeddings = output.last_hidden_state
|
| 28 |
+
#print("tokens_embeddings:" + str(tokens_embeddings.shape))
|
| 29 |
+
|
| 30 |
+
# mean pooling to get text embedding
|
| 31 |
+
embeddings = tokens_embeddings * tokens.attention_mask[...,None] # [B, T, emb]
|
| 32 |
+
#print("embeddings:" + str(embeddings.shape))
|
| 33 |
+
|
| 34 |
+
embeddings = embeddings.sum(1) # [B, emb]
|
| 35 |
+
valid_tokens = tokens.attention_mask.sum(1) # [B]
|
| 36 |
+
embeddings = embeddings / valid_tokens[...,None] # [B, emb]
|
| 37 |
+
|
| 38 |
+
return embeddings
|
| 39 |
+
|
| 40 |
+
# from scratch: nn.CosineSimilarity(dim = 1)(q,a)
|
| 41 |
+
def cos_score(self, q, a):
|
| 42 |
+
q_norm = q / (q.pow(2).sum(dim=1, keepdim=True).pow(0.5))
|
| 43 |
+
r_norm = a / (a.pow(2).sum(dim=1, keepdim=True).pow(0.5))
|
| 44 |
+
return (q_norm @ r_norm.T).diagonal()
|
| 45 |
+
|
| 46 |
+
# contrastive training
|
| 47 |
+
class TrainModel(nn.Module):
|
| 48 |
+
def __init__(self):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.m = EmbeddingModel("bert-base-uncased")
|
| 51 |
+
|
| 52 |
+
def forward(self, s1, s2, score):
|
| 53 |
+
cos_score = self.m.cos_score(self.m(s1), self.m(s2))
|
| 54 |
+
loss = nn.MSELoss()(cos_score, score)
|
| 55 |
+
return loss, cos_score
|
| 56 |
+
|
| 57 |
+
def searchWiki(s):
|
| 58 |
+
response = requests.get(
|
| 59 |
+
'https://en.wikipedia.org/w/api.php',
|
| 60 |
+
params={
|
| 61 |
+
'action': 'query',
|
| 62 |
+
'format': 'json',
|
| 63 |
+
'titles': s,
|
| 64 |
+
'prop': 'extracts',
|
| 65 |
+
'exintro': True,
|
| 66 |
+
'explaintext': True,
|
| 67 |
+
}
|
| 68 |
+
).json()
|
| 69 |
+
page = next(iter(response['query']['pages'].values()))
|
| 70 |
+
return page['extract'].replace("\n","")
|
| 71 |
+
|
| 72 |
+
# sentence chunking
|
| 73 |
+
def chunk(w):
|
| 74 |
+
return w.split(".")
|
| 75 |
+
|
| 76 |
+
def generate_chunk_data(concepts):
|
| 77 |
+
wiki_data = [searchWiki(c).replace("\n","") for c in concepts]
|
| 78 |
+
chunk_data = []
|
| 79 |
+
for w in wiki_data:
|
| 80 |
+
chunk_data = chunk_data + chunk(w)
|
| 81 |
+
|
| 82 |
+
chunk_data = [c.strip()+"." for c in chunk_data]
|
| 83 |
+
while '.' in chunk_data:
|
| 84 |
+
chunk_data.remove('.')
|
| 85 |
+
|
| 86 |
+
return chunk_data
|
| 87 |
+
|
| 88 |
def generate_chunk_emb(m, chunk_data):
|
| 89 |
with torch.no_grad():
|
| 90 |
emb = m(chunk_data, device = "cpu")
|
myTextEmbedding.py
CHANGED
|
@@ -2,7 +2,6 @@ import torch
|
|
| 2 |
import torch.nn as nn
|
| 3 |
from torch import tensor
|
| 4 |
from transformers import BertModel, BertTokenizer
|
| 5 |
-
#import gzip
|
| 6 |
import pandas as pd
|
| 7 |
import requests
|
| 8 |
|
|
|
|
| 2 |
import torch.nn as nn
|
| 3 |
from torch import tensor
|
| 4 |
from transformers import BertModel, BertTokenizer
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
import requests
|
| 7 |
|
requirements.txt
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
torch
|
| 2 |
transformers
|
| 3 |
-
pandas
|
| 4 |
requests
|
| 5 |
gradio
|
|
|
|
| 1 |
torch
|
| 2 |
transformers
|
|
|
|
| 3 |
requests
|
| 4 |
gradio
|