Spaces:
Runtime error
Runtime error
import streamlit as st | |
import cv2 | |
import numpy as np | |
import PIL | |
from pathlib import Path | |
# Local Modules | |
import settings | |
import helper | |
from helper import _display_detected_frames # Ensure this import | |
# Setting page layout | |
st.set_page_config( | |
page_title="Object Detection using YOLO", | |
page_icon="🤖", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Main page heading | |
st.title("Object Detection using YOLOv10 - CPU Only") | |
# Sidebar | |
st.sidebar.header("ML Model Config") | |
# Model Options | |
confidence = float(st.sidebar.slider("Select Model Confidence", 25, 100, 40)) / 100 | |
# Load Pre-trained ML Model | |
model_path = Path(settings.DETECTION_MODEL) | |
try: | |
model = helper.load_model(model_path) | |
except Exception as ex: | |
st.error(f"Unable to load model. Check the specified path: {model_path}") | |
st.error(ex) | |
st.sidebar.header("Image/Video Config") | |
source_radio = st.sidebar.radio("Select Source", settings.SOURCES_LIST) | |
source_img = None | |
# If image is selected | |
if source_radio == settings.IMAGE: | |
source_img = st.sidebar.file_uploader("Choose an image...", type=("jpg", "jpeg", "png", 'bmp', 'webp')) | |
col1, col2 = st.columns(2) | |
with col1: | |
try: | |
if source_img is None: | |
default_image_path = str(settings.DEFAULT_IMAGE) | |
default_image = PIL.Image.open(default_image_path) | |
st.image(default_image_path, caption="Default Image", use_column_width=True) | |
else: | |
uploaded_image = PIL.Image.open(source_img) | |
st.image(source_img, caption="Uploaded Image", use_column_width=True) | |
except Exception as ex: | |
st.error("Error occurred while opening the image.") | |
st.error(ex) | |
with col2: | |
if source_img is None: | |
default_detected_image_path = str(settings.DEFAULT_DETECT_IMAGE) | |
default_detected_image = PIL.Image.open(default_detected_image_path) | |
st.image(default_detected_image_path, caption='Detected Image', use_column_width=True) | |
else: | |
if st.sidebar.button('Detect Objects'): | |
try: | |
# Convert PIL image to OpenCV format | |
image_np = np.array(uploaded_image) | |
_display_detected_frames(confidence, model, st, image_np) | |
except Exception as ex: | |
st.error("Error occurred while detecting objects.") | |
st.error(ex) | |
# If video is selected | |
elif source_radio == settings.VIDEO: | |
helper.play_stored_video(confidence, model) | |