|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from PIL import Image |
|
import streamlit as st |
|
import numpy as np |
|
import requests |
|
from io import BytesIO |
|
from kan_linear import KANLinear |
|
|
|
class CNNKAN(nn.Module): |
|
def __init__(self): |
|
super(CNNKAN, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) |
|
self.bn1 = nn.BatchNorm2d(32) |
|
self.pool1 = nn.MaxPool2d(2) |
|
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) |
|
self.bn2 = nn.BatchNorm2d(64) |
|
self.pool2 = nn.MaxPool2d(2) |
|
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) |
|
self.bn3 = nn.BatchNorm2d(128) |
|
self.pool3 = nn.MaxPool2d(2) |
|
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, padding=1) |
|
self.bn4 = nn.BatchNorm2d(256) |
|
self.pool4 = nn.MaxPool2d(2) |
|
self.dropout = nn.Dropout(0.5) |
|
self.kan1 = KANLinear(256 * 12 * 12, 512) |
|
self.kan2 = KANLinear(512, 1) |
|
|
|
def forward(self, x): |
|
x = F.selu(self.bn1(self.conv1(x))) |
|
x = self.pool1(x) |
|
x = F.selu(self.bn2(self.conv2(x))) |
|
x = self.pool2(x) |
|
x = F.selu(self.bn3(self.conv3(x))) |
|
x = self.pool3(x) |
|
x = F.selu(self.bn4(self.conv4(x))) |
|
x = self.pool4(x) |
|
x = x.view(x.size(0), -1) |
|
x = self.dropout(x) |
|
x = self.kan1(x) |
|
x = self.dropout(x) |
|
x = self.kan2(x) |
|
return x |
|
|
|
def load_model(weights_path, device): |
|
model = CNNKAN().to(device) |
|
state_dict = torch.load(weights_path, map_location=device) |
|
|
|
# Remove 'module.' prefix from keys |
|
from collections import OrderedDict |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
if k.startswith('module.'): |
|
new_state_dict[k[7:]] = v |
|
else: |
|
new_state_dict[k] = v |
|
|
|
model.load_state_dict(new_state_dict) |
|
model.eval() |
|
return model |
|
|
|
def load_image_from_url(url): |
|
response = requests.get(url) |
|
img = Image.open(BytesIO(response.content)).convert('RGB') |
|
return img |
|
|
|
def preprocess_image(image): |
|
transform = transforms.Compose([ |
|
transforms.Resize((200, 200)), |
|
transforms.ToTensor() |
|
]) |
|
return transform(image).unsqueeze(0) |
|
|
|
# Streamlit app |
|
st.title("Cat and Dog Classification with CNN-KAN") |
|
|
|
st.sidebar.title("Upload Images") |
|
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "webp"]) |
|
image_url = st.sidebar.text_input("Or enter image URL...") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = load_model('weights/best_model_weights_KAN.pth', device) |
|
|
|
img = None |
|
|
|
if uploaded_file is not None: |
|
img = Image.open(uploaded_file).convert('RGB') |
|
elif image_url: |
|
try: |
|
img = load_image_from_url(image_url) |
|
except Exception as e: |
|
st.sidebar.error(f"Error loading image from URL: {e}") |
|
|
|
st.sidebar.write("-----") |
|
|
|
# Define your information for the footer |
|
name = "Wayan Dadang" |
|
|
|
st.sidebar.write("Follow me on:") |
|
# Create a footer section with links and copyright information |
|
st.sidebar.markdown(f""" |
|
[LinkedIn](https://www.linkedin.com/in/wayan-dadang-801757116/) |
|
[GitHub](https://github.com/Wayan123) |
|
[Resume](https://wayan123.github.io/) |
|
© {name} - {2024} |
|
""", unsafe_allow_html=True) |
|
|
|
if img is not None: |
|
st.image(np.array(img), caption='Uploaded Image.', use_column_width=True) |
|
if st.button('Predict'): |
|
img_tensor = preprocess_image(img).to(device) |
|
|
|
with torch.no_grad(): |
|
output = model(img_tensor) |
|
prob = torch.sigmoid(output).item() |
|
|
|
st.write(f"Prediction: {prob:.4f}") |
|
|
|
if prob < 0.5: |
|
st.write("This image is classified as a Cat.") |
|
else: |
|
st.write("This image is classified as a Dog") |
|
|
|
|