Spaces:
Runtime error
Runtime error
zejunyang
commited on
Commit
·
3a0bff5
1
Parent(s):
18f04c7
debug
Browse files- app.py +6 -6
- src/audio2vid.py +63 -64
- src/vid2vid.py +59 -62
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
from src.create_modules import Processer
|
7 |
|
8 |
title = r"""
|
9 |
<h1>AniPortrait</h1>
|
@@ -13,7 +13,7 @@ description = r"""
|
|
13 |
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Zejun-Yang/AniPortrait' target='_blank'><b>AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations</b></a>.<br>
|
14 |
"""
|
15 |
|
16 |
-
main_processer = Processer()
|
17 |
|
18 |
with gr.Blocks() as demo:
|
19 |
|
@@ -77,13 +77,13 @@ with gr.Blocks() as demo:
|
|
77 |
)
|
78 |
|
79 |
a2v_botton.click(
|
80 |
-
fn=
|
81 |
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video,
|
82 |
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed],
|
83 |
outputs=[a2v_output_video, a2v_ref_img]
|
84 |
)
|
85 |
v2v_botton.click(
|
86 |
-
fn=
|
87 |
inputs=[v2v_ref_img, v2v_source_video,
|
88 |
v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed],
|
89 |
outputs=[v2v_output_video, v2v_ref_img]
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from src.audio2vid import audio2video
|
4 |
+
from src.vid2vid import video2video
|
5 |
|
6 |
+
# from src.create_modules import Processer
|
7 |
|
8 |
title = r"""
|
9 |
<h1>AniPortrait</h1>
|
|
|
13 |
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Zejun-Yang/AniPortrait' target='_blank'><b>AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations</b></a>.<br>
|
14 |
"""
|
15 |
|
16 |
+
# main_processer = Processer()
|
17 |
|
18 |
with gr.Blocks() as demo:
|
19 |
|
|
|
77 |
)
|
78 |
|
79 |
a2v_botton.click(
|
80 |
+
fn=audio2video,
|
81 |
inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video,
|
82 |
a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed],
|
83 |
outputs=[a2v_output_video, a2v_ref_img]
|
84 |
)
|
85 |
v2v_botton.click(
|
86 |
+
fn=video2video,
|
87 |
inputs=[v2v_ref_img, v2v_source_video,
|
88 |
v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed],
|
89 |
outputs=[v2v_output_video, v2v_ref_img]
|
src/audio2vid.py
CHANGED
@@ -9,27 +9,26 @@ import spaces
|
|
9 |
from scipy.spatial.transform import Rotation as R
|
10 |
from scipy.interpolate import interp1d
|
11 |
|
12 |
-
|
13 |
-
|
14 |
from omegaconf import OmegaConf
|
15 |
from PIL import Image
|
16 |
from torchvision import transforms
|
17 |
-
|
18 |
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
from src.utils.util import save_videos_grid
|
25 |
|
26 |
-
|
27 |
from src.utils.audio_util import prepare_audio_feature
|
28 |
-
|
29 |
-
|
30 |
from src.utils.pose_util import project_points
|
31 |
from src.utils.crop_face_single import crop_face
|
32 |
-
from src.create_modules import lmk_extractor, vis, a2m_model, pipe
|
33 |
|
34 |
|
35 |
def matrix_to_euler_and_translation(matrix):
|
@@ -51,7 +50,7 @@ def smooth_pose_seq(pose_seq, window_size=5):
|
|
51 |
return smoothed_pose_seq
|
52 |
|
53 |
def get_headpose_temp(input_video):
|
54 |
-
|
55 |
cap = cv2.VideoCapture(input_video)
|
56 |
|
57 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
@@ -100,70 +99,70 @@ def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, l
|
|
100 |
|
101 |
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
audio_infer_config = OmegaConf.load(config.audio_inference_config)
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
|
132 |
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
|
139 |
-
|
140 |
-
|
141 |
|
142 |
generator = torch.manual_seed(seed)
|
143 |
|
144 |
width, height = size, size
|
145 |
|
146 |
-
#
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
|
168 |
date_str = datetime.now().strftime("%Y%m%d")
|
169 |
time_str = datetime.now().strftime("%H%M")
|
@@ -172,8 +171,8 @@ def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, l
|
|
172 |
save_dir = Path(f"output/{date_str}/{save_dir_name}")
|
173 |
save_dir.mkdir(exist_ok=True, parents=True)
|
174 |
|
175 |
-
|
176 |
-
|
177 |
|
178 |
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
179 |
ref_image_np = crop_face(ref_image_np, lmk_extractor)
|
|
|
9 |
from scipy.spatial.transform import Rotation as R
|
10 |
from scipy.interpolate import interp1d
|
11 |
|
12 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
13 |
+
from einops import repeat
|
14 |
from omegaconf import OmegaConf
|
15 |
from PIL import Image
|
16 |
from torchvision import transforms
|
17 |
+
from transformers import CLIPVisionModelWithProjection
|
18 |
|
19 |
|
20 |
+
from src.models.pose_guider import PoseGuider
|
21 |
+
from src.models.unet_2d_condition import UNet2DConditionModel
|
22 |
+
from src.models.unet_3d import UNet3DConditionModel
|
23 |
+
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
24 |
from src.utils.util import save_videos_grid
|
25 |
|
26 |
+
from src.audio_models.model import Audio2MeshModel
|
27 |
from src.utils.audio_util import prepare_audio_feature
|
28 |
+
from src.utils.mp_utils import LMKExtractor
|
29 |
+
from src.utils.draw_util import FaceMeshVisualizer
|
30 |
from src.utils.pose_util import project_points
|
31 |
from src.utils.crop_face_single import crop_face
|
|
|
32 |
|
33 |
|
34 |
def matrix_to_euler_and_translation(matrix):
|
|
|
50 |
return smoothed_pose_seq
|
51 |
|
52 |
def get_headpose_temp(input_video):
|
53 |
+
lmk_extractor = LMKExtractor()
|
54 |
cap = cv2.VideoCapture(input_video)
|
55 |
|
56 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
99 |
|
100 |
config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
|
101 |
|
102 |
+
if config.weight_dtype == "fp16":
|
103 |
+
weight_dtype = torch.float16
|
104 |
+
else:
|
105 |
+
weight_dtype = torch.float32
|
106 |
|
107 |
audio_infer_config = OmegaConf.load(config.audio_inference_config)
|
108 |
+
# prepare model
|
109 |
+
a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
|
110 |
+
a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt'], map_location="cpu"), strict=False)
|
111 |
+
a2m_model.cuda().eval()
|
112 |
|
113 |
+
vae = AutoencoderKL.from_pretrained(
|
114 |
+
config.pretrained_vae_path,
|
115 |
+
).to("cuda", dtype=weight_dtype)
|
116 |
|
117 |
+
reference_unet = UNet2DConditionModel.from_pretrained(
|
118 |
+
config.pretrained_base_model_path,
|
119 |
+
subfolder="unet",
|
120 |
+
).to(dtype=weight_dtype, device="cuda")
|
121 |
|
122 |
+
inference_config_path = config.inference_config
|
123 |
+
infer_config = OmegaConf.load(inference_config_path)
|
124 |
+
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
125 |
+
config.pretrained_base_model_path,
|
126 |
+
config.motion_module_path,
|
127 |
+
subfolder="unet",
|
128 |
+
unet_additional_kwargs=infer_config.unet_additional_kwargs,
|
129 |
+
).to(dtype=weight_dtype, device="cuda")
|
130 |
|
131 |
|
132 |
+
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
|
133 |
|
134 |
+
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
135 |
+
config.image_encoder_path
|
136 |
+
).to(dtype=weight_dtype, device="cuda")
|
137 |
|
138 |
+
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
139 |
+
scheduler = DDIMScheduler(**sched_kwargs)
|
140 |
|
141 |
generator = torch.manual_seed(seed)
|
142 |
|
143 |
width, height = size, size
|
144 |
|
145 |
+
# load pretrained weights
|
146 |
+
denoising_unet.load_state_dict(
|
147 |
+
torch.load(config.denoising_unet_path, map_location="cpu"),
|
148 |
+
strict=False,
|
149 |
+
)
|
150 |
+
reference_unet.load_state_dict(
|
151 |
+
torch.load(config.reference_unet_path, map_location="cpu"),
|
152 |
+
)
|
153 |
+
pose_guider.load_state_dict(
|
154 |
+
torch.load(config.pose_guider_path, map_location="cpu"),
|
155 |
+
)
|
156 |
+
|
157 |
+
pipe = Pose2VideoPipeline(
|
158 |
+
vae=vae,
|
159 |
+
image_encoder=image_enc,
|
160 |
+
reference_unet=reference_unet,
|
161 |
+
denoising_unet=denoising_unet,
|
162 |
+
pose_guider=pose_guider,
|
163 |
+
scheduler=scheduler,
|
164 |
+
)
|
165 |
+
pipe = pipe.to("cuda", dtype=weight_dtype)
|
166 |
|
167 |
date_str = datetime.now().strftime("%Y%m%d")
|
168 |
time_str = datetime.now().strftime("%H%M")
|
|
|
171 |
save_dir = Path(f"output/{date_str}/{save_dir_name}")
|
172 |
save_dir.mkdir(exist_ok=True, parents=True)
|
173 |
|
174 |
+
lmk_extractor = LMKExtractor()
|
175 |
+
vis = FaceMeshVisualizer(forehead_edge=False)
|
176 |
|
177 |
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
178 |
ref_image_np = crop_face(ref_image_np, lmk_extractor)
|
src/vid2vid.py
CHANGED
@@ -7,89 +7,88 @@ import numpy as np
|
|
7 |
import cv2
|
8 |
import torch
|
9 |
import spaces
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
from PIL import Image
|
14 |
from torchvision import transforms
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
from src.utils.util import get_fps, read_frames, save_videos_grid
|
22 |
|
23 |
-
|
24 |
-
|
25 |
from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix
|
26 |
from src.audio2vid import smooth_pose_seq
|
27 |
from src.utils.crop_face_single import crop_face
|
28 |
-
from src.create_modules import lmk_extractor, vis, pipe
|
29 |
|
30 |
@spaces.GPU
|
31 |
def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
32 |
cfg = 3.5
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
|
68 |
generator = torch.manual_seed(seed)
|
69 |
|
70 |
width, height = size, size
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
|
94 |
date_str = datetime.now().strftime("%Y%m%d")
|
95 |
time_str = datetime.now().strftime("%H%M")
|
@@ -99,11 +98,9 @@ def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
|
99 |
save_dir.mkdir(exist_ok=True, parents=True)
|
100 |
|
101 |
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
|
107 |
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
108 |
ref_image_np = crop_face(ref_image_np, lmk_extractor)
|
109 |
if ref_image_np is None:
|
|
|
7 |
import cv2
|
8 |
import torch
|
9 |
import spaces
|
10 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
11 |
+
from einops import repeat
|
12 |
+
from omegaconf import OmegaConf
|
13 |
from PIL import Image
|
14 |
from torchvision import transforms
|
15 |
+
from transformers import CLIPVisionModelWithProjection
|
16 |
|
17 |
+
from src.models.pose_guider import PoseGuider
|
18 |
+
from src.models.unet_2d_condition import UNet2DConditionModel
|
19 |
+
from src.models.unet_3d import UNet3DConditionModel
|
20 |
+
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
|
21 |
from src.utils.util import get_fps, read_frames, save_videos_grid
|
22 |
|
23 |
+
from src.utils.mp_utils import LMKExtractor
|
24 |
+
from src.utils.draw_util import FaceMeshVisualizer
|
25 |
from src.utils.pose_util import project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix
|
26 |
from src.audio2vid import smooth_pose_seq
|
27 |
from src.utils.crop_face_single import crop_face
|
|
|
28 |
|
29 |
@spaces.GPU
|
30 |
def video2video(ref_img, source_video, size=512, steps=25, length=150, seed=42):
|
31 |
cfg = 3.5
|
32 |
|
33 |
+
config = OmegaConf.load('./configs/prompts/animation_facereenac.yaml')
|
34 |
|
35 |
+
if config.weight_dtype == "fp16":
|
36 |
+
weight_dtype = torch.float16
|
37 |
+
else:
|
38 |
+
weight_dtype = torch.float32
|
39 |
|
40 |
+
vae = AutoencoderKL.from_pretrained(
|
41 |
+
config.pretrained_vae_path,
|
42 |
+
).to("cuda", dtype=weight_dtype)
|
43 |
|
44 |
+
reference_unet = UNet2DConditionModel.from_pretrained(
|
45 |
+
config.pretrained_base_model_path,
|
46 |
+
subfolder="unet",
|
47 |
+
).to(dtype=weight_dtype, device="cuda")
|
48 |
|
49 |
+
inference_config_path = config.inference_config
|
50 |
+
infer_config = OmegaConf.load(inference_config_path)
|
51 |
+
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
52 |
+
config.pretrained_base_model_path,
|
53 |
+
config.motion_module_path,
|
54 |
+
subfolder="unet",
|
55 |
+
unet_additional_kwargs=infer_config.unet_additional_kwargs,
|
56 |
+
).to(dtype=weight_dtype, device="cuda")
|
57 |
|
58 |
+
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention
|
59 |
|
60 |
+
image_enc = CLIPVisionModelWithProjection.from_pretrained(
|
61 |
+
config.image_encoder_path
|
62 |
+
).to(dtype=weight_dtype, device="cuda")
|
63 |
|
64 |
+
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
|
65 |
+
scheduler = DDIMScheduler(**sched_kwargs)
|
66 |
|
67 |
generator = torch.manual_seed(seed)
|
68 |
|
69 |
width, height = size, size
|
70 |
|
71 |
+
# load pretrained weights
|
72 |
+
denoising_unet.load_state_dict(
|
73 |
+
torch.load(config.denoising_unet_path, map_location="cpu"),
|
74 |
+
strict=False,
|
75 |
+
)
|
76 |
+
reference_unet.load_state_dict(
|
77 |
+
torch.load(config.reference_unet_path, map_location="cpu"),
|
78 |
+
)
|
79 |
+
pose_guider.load_state_dict(
|
80 |
+
torch.load(config.pose_guider_path, map_location="cpu"),
|
81 |
+
)
|
82 |
+
|
83 |
+
pipe = Pose2VideoPipeline(
|
84 |
+
vae=vae,
|
85 |
+
image_encoder=image_enc,
|
86 |
+
reference_unet=reference_unet,
|
87 |
+
denoising_unet=denoising_unet,
|
88 |
+
pose_guider=pose_guider,
|
89 |
+
scheduler=scheduler,
|
90 |
+
)
|
91 |
+
pipe = pipe.to("cuda", dtype=weight_dtype)
|
92 |
|
93 |
date_str = datetime.now().strftime("%Y%m%d")
|
94 |
time_str = datetime.now().strftime("%H%M")
|
|
|
98 |
save_dir.mkdir(exist_ok=True, parents=True)
|
99 |
|
100 |
|
101 |
+
lmk_extractor = LMKExtractor()
|
102 |
+
vis = FaceMeshVisualizer(forehead_edge=False)
|
103 |
|
|
|
|
|
104 |
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
|
105 |
ref_image_np = crop_face(ref_image_np, lmk_extractor)
|
106 |
if ref_image_np is None:
|