|
import os |
|
import requests |
|
import time |
|
import functools |
|
import threading |
|
import uuid |
|
import base64 |
|
from pathlib import Path |
|
from dotenv import load_dotenv |
|
import gradio as gr |
|
import random |
|
import torch |
|
import io |
|
from PIL import Image, ImageDraw, ImageFont |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
load_dotenv() |
|
API_KEY = os.getenv("WAVESPEED_API_KEY") |
|
if not API_KEY: |
|
raise ValueError("WAVESPEED_API_KEY is not set in environment variables") |
|
|
|
|
|
MODEL_URL = "TostAI/nsfw-text-detection-large" |
|
TITLE = "🖼️🔍 Image Prompt Safety Classifier 🛡️" |
|
DESCRIPTION = "✨ Enter an image generation prompt to classify its safety level! ✨" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL) |
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL) |
|
|
|
|
|
CLASS_NAMES = { |
|
0: "✅ SAFE - This prompt is appropriate and harmless.", |
|
1: "⚠️ QUESTIONABLE - This prompt may require further review.", |
|
2: "🚫 UNSAFE - This prompt is likely to generate inappropriate content." |
|
} |
|
|
|
|
|
@functools.lru_cache(maxsize=128) |
|
def classify_text(text): |
|
inputs = tokenizer(text, |
|
return_tensors="pt", |
|
truncation=True, |
|
padding=True, |
|
max_length=1024) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
logits = outputs.logits |
|
predicted_class = torch.argmax(logits, dim=1).item() |
|
|
|
return predicted_class, CLASS_NAMES[predicted_class] |
|
|
|
|
|
class ClientManager: |
|
_instances = {} |
|
_lock = threading.Lock() |
|
|
|
@classmethod |
|
def get_manager(cls, client_id=None): |
|
if not client_id: |
|
client_id = str(uuid.uuid4()) |
|
|
|
with cls._lock: |
|
if client_id not in cls._instances: |
|
cls._instances[client_id] = ClientGenerationManager() |
|
return cls._instances[client_id] |
|
|
|
@classmethod |
|
def cleanup_old_clients(cls, max_age=3600): |
|
current_time = time.time() |
|
with cls._lock: |
|
to_remove = [] |
|
for client_id, manager in cls._instances.items(): |
|
if (hasattr(manager, "last_activity") |
|
and current_time - manager.last_activity > max_age): |
|
to_remove.append(client_id) |
|
|
|
for client_id in to_remove: |
|
del cls._instances[client_id] |
|
|
|
|
|
class ClientGenerationManager: |
|
|
|
def __init__(self): |
|
self.lock = threading.Lock() |
|
self.last_activity = time.time() |
|
self.request_timestamps = [] |
|
|
|
def update_activity(self): |
|
with self.lock: |
|
self.last_activity = time.time() |
|
|
|
def add_request_timestamp(self): |
|
with self.lock: |
|
self.request_timestamps.append(time.time()) |
|
|
|
def has_exceeded_limit(self, limit=20): |
|
with self.lock: |
|
current_time = time.time() |
|
|
|
self.request_timestamps = [ |
|
ts for ts in self.request_timestamps |
|
if current_time - ts <= 3600 |
|
] |
|
return len(self.request_timestamps) >= limit |
|
|
|
|
|
class SessionManager: |
|
_instances = {} |
|
_lock = threading.Lock() |
|
|
|
@classmethod |
|
def get_manager(cls, session_id=None): |
|
if session_id is None: |
|
session_id = str(uuid.uuid4()) |
|
|
|
with cls._lock: |
|
if session_id not in cls._instances: |
|
cls._instances[session_id] = GenerationManager() |
|
return session_id, cls._instances[session_id] |
|
|
|
@classmethod |
|
def cleanup_old_sessions(cls, max_age=3600): |
|
current_time = time.time() |
|
with cls._lock: |
|
to_remove = [] |
|
for session_id, manager in cls._instances.items(): |
|
if (hasattr(manager, "last_activity") |
|
and current_time - manager.last_activity > max_age): |
|
to_remove.append(session_id) |
|
|
|
for session_id in to_remove: |
|
del cls._instances[session_id] |
|
|
|
|
|
class GenerationManager: |
|
|
|
def __init__(self): |
|
self.last_activity = time.time() |
|
self.request_timestamps = [] |
|
|
|
def update_activity(self): |
|
self.last_activity = time.time() |
|
|
|
def add_request_timestamp(self): |
|
self.request_timestamps.append(time.time()) |
|
|
|
def has_exceeded_limit(self, |
|
limit=10): |
|
current_time = time.time() |
|
|
|
self.request_timestamps = [ |
|
ts for ts in self.request_timestamps if current_time - ts <= 3600 |
|
] |
|
return len(self.request_timestamps) >= limit |
|
|
|
|
|
@torch.no_grad() |
|
def classify_prompt(prompt): |
|
inputs = tokenizer(prompt, |
|
return_tensors="pt", |
|
truncation=True, |
|
max_length=512) |
|
outputs = model(**inputs) |
|
return torch.argmax(outputs.logits).item() |
|
|
|
|
|
def image_to_base64(file_path): |
|
with open(file_path, "rb") as f: |
|
return base64.b64encode(f.read()).decode() |
|
|
|
|
|
def decode_base64_to_image(base64_str): |
|
image_data = base64.b64decode(base64_str) |
|
return Image.open(io.BytesIO(image_data)) |
|
|
|
|
|
def generate_image( |
|
image_file, |
|
prompt, |
|
seed, |
|
session_id, |
|
enable_safety_checker, |
|
request: gr.Request, |
|
): |
|
try: |
|
client_ip = request.client.host |
|
x_forwarded_for = request.headers.get('x-forwarded-for') |
|
if x_forwarded_for: |
|
client_ip = x_forwarded_for |
|
print(f"Client IP: {client_ip}") |
|
client_generation_manager = ClientManager.get_manager(client_ip) |
|
client_generation_manager.update_activity() |
|
if client_generation_manager.has_exceeded_limit(limit=10): |
|
error_message = "❌ Your network has exceeded the limit of 10 requests per hour. Please try again later." |
|
yield error_message, None, "", None |
|
return |
|
|
|
client_generation_manager.add_request_timestamp() |
|
"""Generate images with big status box during generation""" |
|
|
|
session_id, manager = SessionManager.get_manager(session_id) |
|
manager.update_activity() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
manager.add_request_timestamp() |
|
|
|
if not prompt or prompt.strip() == "": |
|
|
|
error_message = "⚠️ Please enter a prompt first" |
|
yield error_message, None, "", None |
|
return |
|
|
|
error_messages = [] |
|
if not image_file: |
|
error_messages.append("Please upload an image file") |
|
elif not Path(image_file).exists(): |
|
error_messages.append("File does not exist") |
|
if not prompt.strip(): |
|
error_messages.append("Prompt cannot be empty") |
|
if error_messages: |
|
error_message = "❌ Input validation failed: " + ", ".join( |
|
error_messages) |
|
yield error_message, None, "", None |
|
return |
|
|
|
|
|
classification, message = classify_text(prompt) |
|
if classification == 2: |
|
yield "❌ NSFW prompt detected", None, "", None |
|
return |
|
|
|
|
|
status_message = f"🔄 PROCESSING: '{prompt}'" |
|
yield status_message, None, "", None |
|
|
|
try: |
|
base64_image = image_to_base64(image_file) |
|
input_image = decode_base64_to_image(base64_image) |
|
except Exception as e: |
|
error_message = f"❌ File processing failed: {str(e)}" |
|
yield error_message, None, "", None |
|
return |
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {API_KEY}", |
|
} |
|
payload = { |
|
"enable_safety_checker": enable_safety_checker, |
|
"image": base64_image, |
|
"prompt": prompt, |
|
"seed": int(seed) if seed != -1 else random.randint(0, 999999) |
|
} |
|
|
|
response = requests.post( |
|
"https://api.wavespeed.ai/api/v3/wavespeed-ai/flux-kontext-dev-ultra-fast", |
|
headers=headers, |
|
json=payload, |
|
timeout=30) |
|
response.raise_for_status() |
|
|
|
request_id = response.json()["data"]["id"] |
|
result_url = f"https://api.wavespeed.ai/api/v3/predictions/{request_id}/result" |
|
start_time = time.time() |
|
|
|
for _ in range(60): |
|
time.sleep(1.0) |
|
resp = requests.get(result_url, headers=headers) |
|
resp.raise_for_status() |
|
|
|
data = resp.json()["data"] |
|
status = data["status"] |
|
|
|
if status == "completed": |
|
elapsed = time.time() - start_time |
|
output_url = data["outputs"][0] |
|
has_nsfw_content = data["has_nsfw_contents"][0] |
|
if has_nsfw_content: |
|
error_message = "❌ NSFW content detected in the output" |
|
yield error_message, None, "", None |
|
else: |
|
yield f"🎉 Generation successful! Time taken {elapsed:.1f}s", output_url, output_url, update_recent_gallery( |
|
prompt, input_image, output_url) |
|
return |
|
elif status == "failed": |
|
raise Exception(data.get("error", "Unknown error")) |
|
else: |
|
error_message = f"⏳ Current status: {status.capitalize()}..." |
|
yield error_message, None, "", None |
|
|
|
raise Exception("Generation timed out") |
|
|
|
except Exception as e: |
|
error_message = f"❌ Generation failed: {str(e)}" |
|
yield error_message, None, "", None |
|
|
|
|
|
|
|
def cleanup_task(): |
|
SessionManager.cleanup_old_sessions() |
|
ClientManager.cleanup_old_clients() |
|
|
|
threading.Timer(3600, cleanup_task).start() |
|
|
|
|
|
|
|
recent_generations = [] |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), |
|
css=""" |
|
.status-box { padding: 10px; border-radius: 5px; margin: 5px; } |
|
.safe { background: #e8f5e9; border: 1px solid #a5d6a7; } |
|
.warning { background: #fff3e0; border: 1px solid #ffcc80; } |
|
.error { background: #ffebee; border: 1px solid #ef9a9a; } |
|
""") as app: |
|
|
|
session_id = gr.State(str(uuid.uuid4())) |
|
|
|
gr.Markdown("# 🖼️FLUX Kontext Dev Ultra Fast Live") |
|
gr.Markdown( |
|
"FLUX Kontext dev is a new SOTA image editing model published by Black Forest Labs. We have deployed it on [WaveSpeedAI](https://wavespeed.ai/) for ultra-fast image editing. You can use it to edit images in various styles, add objects, or even change the mood of the image. It supports both text prompts and image inputs." |
|
) |
|
gr.Markdown( |
|
"- [FLUX Kontext dev on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev)" |
|
"\n" |
|
"- [FLUX Kontext dev LoRA on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-lora)" |
|
"\n" |
|
"- [FLUX Kontext dev Ultra Fast on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-ultra-fast)" |
|
"\n" |
|
"- [FLUX Kontext dev LoRA Ultra Fast on WaveSpeedAI](https://wavespeed.ai/models/wavespeed-ai/flux-kontext-dev-lora-ultra-fast)" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_file = gr.Image(label="Upload Image", |
|
type="filepath", |
|
sources=["upload", "clipboard"], |
|
interactive=True, |
|
image_mode="RGB", |
|
value="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-original.png") |
|
prompt = gr.Textbox(label="Prompt", |
|
placeholder="Please enter your prompt...", |
|
lines=3, |
|
value="Convert the image into Claymation style.") |
|
seed = gr.Number(label="seed", |
|
value=-1, |
|
minimum=-1, |
|
maximum=999999, |
|
step=1) |
|
random_btn = gr.Button("random🎲seed", variant="secondary") |
|
enable_safety = gr.Checkbox(label="🔒 Enable Safety Checker", |
|
value=True, |
|
interactive=False) |
|
with gr.Column(scale=1): |
|
output_image = gr.Image(label="Generated Result") |
|
status = gr.Textbox(label="Status", elem_classes=["status-box"]) |
|
output_url = gr.Textbox(label="Image URL", |
|
interactive=True, |
|
visible=False) |
|
submit_btn = gr.Button("Start Generation", variant="primary") |
|
gr.Examples( |
|
examples=[ |
|
[ |
|
"Convert the image into Claymation style.", |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-original.png" |
|
], |
|
[ |
|
"Convert the image into Ghibli style.", |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png" |
|
], |
|
[ |
|
"Add sunglasses to the face of the statue.", |
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux_ip_adapter_input.jpg" |
|
], |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
], |
|
inputs=[prompt, image_file], |
|
label="Examples") |
|
|
|
with gr.Accordion("Recent Generations (last 16)", open=False): |
|
recent_gallery = gr.Gallery(label="Prompt and Output", |
|
columns=4, |
|
interactive=False) |
|
|
|
def get_recent_gallery_items(): |
|
gallery_items = [] |
|
for r in reversed(recent_generations): |
|
if any(x is None for x in r.values()): |
|
continue |
|
gallery_items.append((r["input"], f"Input: {r['prompt']}")) |
|
gallery_items.append((r["output"], f"Output: {r['prompt']}")) |
|
return gr.update(value=gallery_items) |
|
|
|
def update_recent_gallery(prompt, input_image, output_image): |
|
recent_generations.append({ |
|
"prompt": prompt, |
|
"input": input_image, |
|
"output": output_image, |
|
}) |
|
if len(recent_generations) > 16: |
|
recent_generations.pop(0) |
|
return get_recent_gallery_items() |
|
|
|
random_btn.click(fn=lambda: random.randint(0, 999999), outputs=seed) |
|
|
|
submit_btn.click( |
|
generate_image, |
|
inputs=[image_file, prompt, seed, session_id, enable_safety], |
|
outputs=[status, output_image, output_url, recent_gallery], |
|
api_name=False, |
|
max_batch_size=10, |
|
concurrency_limit=20, |
|
concurrency_id="generation", |
|
) |
|
|
|
if __name__ == "__main__": |
|
|
|
cleanup_task() |
|
app.queue(max_size=20).launch( |
|
server_name="0.0.0.0", |
|
max_threads=10, |
|
share=False, |
|
) |
|
|