Spaces:
Running
Running
import streamlit as st | |
from transformers import T5ForConditionalGeneration, T5Tokenizer | |
# Load the model and tokenizer | |
model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048' | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
def summarize_text(text, prefix): | |
src_text = prefix + text | |
input_ids = tokenizer(src_text, return_tensors="pt") | |
generated_tokens = model.generate(**input_ids) | |
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
return result[0] | |
st.title('Text Summarization App') | |
input_text = st.text_area("Enter the text to summarize:", height=300) | |
if st.button("Generate Summaries"): | |
if input_text: | |
title1 = summarize_text(input_text, 'summary: ') | |
title2 = summarize_text(input_text, 'summary brief: ') | |
st.write("### Title 1") | |
st.write(title1) | |
st.write("### Title 2") | |
st.write(title2) | |
else: | |
st.warning("Please enter some text to summarize.") | |