Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,130 @@
|
|
| 1 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from logging import error
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import spaces
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoTokenizer, VitsModel
|
| 6 |
+
import os
|
| 7 |
+
import numpy as np
|
| 8 |
+
import noisereduce as nr
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from typing import Optional, Iterator
|
| 11 |
|
| 12 |
+
# قراءة التوكن من Secrets
|
| 13 |
+
token = os.getenv("acees-token") # تأكد أنك سميته بنفس الاسم في Settings → Repository secrets
|
| 14 |
|
| 15 |
+
# كائن لتخزين النماذج
|
| 16 |
+
models = {}
|
| 17 |
+
|
| 18 |
+
# اختيار الجهاز (CUDA لو متوفر، غير كذا CPU)
|
| 19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# دالة إزالة الضوضاء
|
| 23 |
+
def remove_noise_nr(audio_data, sr=16000):
|
| 24 |
+
return nr.reduce_noise(y=audio_data, hop_length=256, sr=sr)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# دالة inference (streaming / non-streaming)
|
| 28 |
+
def _inference_forward_stream(
|
| 29 |
+
self,
|
| 30 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 31 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 32 |
+
speaker_embeddings: Optional[torch.Tensor] = None,
|
| 33 |
+
chunk_size: int = 32,
|
| 34 |
+
is_streaming: bool = True
|
| 35 |
+
) -> Iterator[torch.Tensor]:
|
| 36 |
+
|
| 37 |
+
padding_mask = attention_mask.unsqueeze(-1).float() if attention_mask is not None else torch.ones_like(input_ids).unsqueeze(-1).float()
|
| 38 |
+
text_encoder_output = self.text_encoder(input_ids=input_ids, padding_mask=padding_mask, attention_mask=attention_mask)
|
| 39 |
+
hidden_states = text_encoder_output[0].transpose(1, 2)
|
| 40 |
+
input_padding_mask = padding_mask.transpose(1, 2)
|
| 41 |
+
|
| 42 |
+
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
|
| 43 |
+
length_scale = 1.0 / self.speaking_rate
|
| 44 |
+
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
|
| 45 |
+
predicted_lengths = torch.clamp_min(torch.sum(duration, [1,2]), 1).long()
|
| 46 |
+
|
| 47 |
+
indices = torch.arange(predicted_lengths.max(), device=predicted_lengths.device)
|
| 48 |
+
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
|
| 49 |
+
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
|
| 50 |
+
|
| 51 |
+
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
|
| 52 |
+
batch_size, _, output_length, input_length = attn_mask.shape
|
| 53 |
+
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
|
| 54 |
+
indices = torch.arange(output_length, device=duration.device)
|
| 55 |
+
valid_indices = indices.unsqueeze(0) < cum_duration
|
| 56 |
+
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
|
| 57 |
+
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0,0,1,0,0,0])[:, :-1]
|
| 58 |
+
attn = padded_indices.unsqueeze(1).transpose(2,3) * attn_mask
|
| 59 |
+
|
| 60 |
+
prior_means = text_encoder_output[1]
|
| 61 |
+
prior_log_variances = text_encoder_output[2]
|
| 62 |
+
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
|
| 63 |
+
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
|
| 64 |
+
spectrogram = latents * output_padding_mask
|
| 65 |
+
|
| 66 |
+
if is_streaming:
|
| 67 |
+
for i in range(0, spectrogram.size(-1), chunk_size):
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
wav = self.decoder(spectrogram[:,:,i:i+chunk_size], speaker_embeddings)
|
| 70 |
+
yield wav.squeeze().cpu().numpy()
|
| 71 |
+
else:
|
| 72 |
+
with torch.no_grad():
|
| 73 |
+
wav = self.decoder(spectrogram, speaker_embeddings)
|
| 74 |
+
yield wav.squeeze().cpu().numpy()
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# تحميل النموذج + التوكن
|
| 78 |
+
def get_model(name_model):
|
| 79 |
+
global models
|
| 80 |
+
if name_model in models:
|
| 81 |
+
tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
|
| 82 |
+
return models[name_model], tokenizer
|
| 83 |
+
|
| 84 |
+
models[name_model] = VitsModel.from_pretrained(name_model, token=token)
|
| 85 |
+
models[name_model].decoder.apply_weight_norm()
|
| 86 |
+
for flow in models[name_model].flow.flows:
|
| 87 |
+
torch.nn.utils.weight_norm(flow.conv_pre)
|
| 88 |
+
torch.nn.utils.weight_norm(flow.conv_post)
|
| 89 |
+
|
| 90 |
+
tokenizer = AutoTokenizer.from_pretrained(name_model, token=token)
|
| 91 |
+
return models[name_model], tokenizer
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# النص الافتراضي
|
| 95 |
+
TXT = "السلام عليكم ورحمة الله وبركاته يا هلا وسهلا ومراحب بالغالي"
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# دالة تحويل النص إلى كلام
|
| 99 |
+
def modelspeech(text=TXT, name_model="wasmdashai/vits-ar-sa-huba-v2", speaking_rate=16000):
|
| 100 |
+
model, tokenizer = get_model(name_model)
|
| 101 |
+
inputs = tokenizer(text, return_tensors="pt").to(device) # يشتغل على CPU أو GPU حسب المتوفر
|
| 102 |
+
model.speaking_rate = speaking_rate
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
outputs = model(**inputs)
|
| 105 |
+
waveform = outputs.waveform[0].cpu().numpy()
|
| 106 |
+
return model.config.sampling_rate, remove_noise_nr(waveform)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# واجهة Gradio
|
| 110 |
+
model_choices = gr.Dropdown(
|
| 111 |
+
choices=[
|
| 112 |
+
"wasmdashai/vits-ar-sa-huba-v1",
|
| 113 |
+
"wasmdashai/vits-ar-sa-huba-v2",
|
| 114 |
+
"wasmdashai/vits-ar-sa-A",
|
| 115 |
+
"wasmdashai/vits-ar-ye-sa",
|
| 116 |
+
"wasmdashai/vits-ar-sa-M-v1",
|
| 117 |
+
"wasmdashai/vits-en-v1"
|
| 118 |
+
],
|
| 119 |
+
label="اختر النموذج",
|
| 120 |
+
value="wasmdashai/vits-ar-sa-huba-v2"
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
demo = gr.Interface(
|
| 124 |
+
fn=modelspeech,
|
| 125 |
+
inputs=["text", model_choices, gr.Slider(0.1, 1, step=0.1, value=0.8)],
|
| 126 |
+
outputs=["audio"]
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
demo.queue()
|
| 130 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|