Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -76,6 +76,52 @@ def home_page():
|
|
76 |
</div>
|
77 |
</div>
|
78 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
def t2t(text, namn_model):
|
80 |
if namn_model == "Group":
|
81 |
out = ASGAI.Group.predictAPI(text)
|
@@ -83,7 +129,9 @@ def t2t(text, namn_model):
|
|
83 |
out = ASGAI.Tec.predictAPI(text)
|
84 |
else:
|
85 |
out = ASGAI.Soft.predictAPI(text)
|
86 |
-
|
|
|
|
|
87 |
|
88 |
def t2seq(text, namn_model):
|
89 |
if namn_model == "Group":
|
@@ -92,6 +140,9 @@ def t2seq(text, namn_model):
|
|
92 |
out = ASGAI.Tec.Predict_ALL(text)
|
93 |
else:
|
94 |
out = ASGAI.Soft.Predict_ALL(text)
|
|
|
|
|
|
|
95 |
return str(out)
|
96 |
def echo(message, history):
|
97 |
text=t2seq(message,"Group")
|
|
|
76 |
</div>
|
77 |
</div>
|
78 |
"""
|
79 |
+
|
80 |
+
def format_cyber_response(user_question: str, raw_answer: str, model="gpt-4") -> str:
|
81 |
+
"""
|
82 |
+
Uses an AI model to rephrase a raw cyber answer into a professionally structured response
|
83 |
+
according to the style and tone of the user question.
|
84 |
+
"""
|
85 |
+
|
86 |
+
prompt = f"""
|
87 |
+
You are an expert technical writer and cybersecurity analyst.
|
88 |
+
|
89 |
+
Your task is to take the following user question and raw answer related to MITRE ATT&CK framework
|
90 |
+
or cyberattack scenario generation, and rewrite the answer professionally based on the nature
|
91 |
+
and tone of the question.
|
92 |
+
|
93 |
+
Instructions:
|
94 |
+
1. Analyze the question to detect whether it is asking for an explanation, summary, technical analysis, or use-case scenario.
|
95 |
+
2. Rewrite the raw answer to match the expected response style (educational, technical, formal, or analytical).
|
96 |
+
3. Use domain-appropriate terminology.
|
97 |
+
4. Make the output coherent, structured, and professionally written.
|
98 |
+
|
99 |
+
---
|
100 |
+
|
101 |
+
Question:
|
102 |
+
{user_question}
|
103 |
+
|
104 |
+
Raw Answer:
|
105 |
+
{raw_answer}
|
106 |
+
|
107 |
+
---
|
108 |
+
|
109 |
+
Final Response:
|
110 |
+
"""
|
111 |
+
|
112 |
+
return prompt
|
113 |
+
from gradio_client import Client
|
114 |
+
|
115 |
+
def ask_wasm(text):
|
116 |
+
txt=format_cyber_response(text)
|
117 |
+
client = Client("wasmdashai/LAHJA-AI")
|
118 |
+
result = client.predict(
|
119 |
+
prompt=txt,
|
120 |
+
api_name="/generate_from_prompt"
|
121 |
+
)
|
122 |
+
return result
|
123 |
+
|
124 |
+
|
125 |
def t2t(text, namn_model):
|
126 |
if namn_model == "Group":
|
127 |
out = ASGAI.Group.predictAPI(text)
|
|
|
129 |
out = ASGAI.Tec.predictAPI(text)
|
130 |
else:
|
131 |
out = ASGAI.Soft.predictAPI(text)
|
132 |
+
|
133 |
+
anwai=ask_wasm(text,str(out))
|
134 |
+
return anwai
|
135 |
|
136 |
def t2seq(text, namn_model):
|
137 |
if namn_model == "Group":
|
|
|
140 |
out = ASGAI.Tec.Predict_ALL(text)
|
141 |
else:
|
142 |
out = ASGAI.Soft.Predict_ALL(text)
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
return str(out)
|
147 |
def echo(message, history):
|
148 |
text=t2seq(message,"Group")
|