RunTaskingCPU / VitsModelSplit /PosteriorDecoderModel.py
wasmdashai's picture
Upload 26 files
2da45ea verified
raw
history blame
14 kB
import os
import sys
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import set_seed
import wandb
import logging
import copy
from .vits_config import VitsConfig, VitsPreTrainedModel
from .feature_extraction import VitsFeatureExtractor
from .vits_output import PosteriorDecoderModelOutput
from .dataset_features_collector import FeaturesCollectionDataset
from .posterior_encoder import VitsPosteriorEncoder
from .decoder import VitsHifiGan
class PosteriorDecoderModel(torch.nn.Module):
def __init__(self, config,posterior_encoder,decoder,device=None):
super().__init__()
if device:
self.device = device
else:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.config = copy.deepcopy(config)
self.posterior_encoder = copy.deepcopy(posterior_encoder)
self.decoder = copy.deepcopy(decoder)
if config.num_speakers > 1:
self.embed_speaker = nn.Embedding(config.num_speakers,
config.speaker_embedding_size
)
self.sampling_rate = config.sampling_rate
self.speaking_rate = config.speaking_rate
self.noise_scale = config.noise_scale
self.noise_scale_duration = config.noise_scale_duration
self.segment_size = self.config.segment_size // self.config.hop_length
self.to(self.device)
#....................................
def slice_segments(self,hidden_states, ids_str, segment_size=4):
batch_size, channels, _ = hidden_states.shape
# 1d tensor containing the indices to keep
indices = torch.arange(segment_size).to(ids_str.device)
# extend the indices to match the shape of hidden_states
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
# offset indices with ids_str
indices = indices + ids_str.view(-1, 1, 1)
# gather indices
output = torch.gather(hidden_states, dim=2, index=indices)
return output
#....................................
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
batch_size, _, seq_len = hidden_states.size()
if sample_lengths is None:
sample_lengths = seq_len
ids_str_max = sample_lengths - segment_size + 1
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
ret = self.slice_segments(hidden_states, ids_str, segment_size)
return ret, ids_str
#....................................
def forward(
self,
labels: Optional[torch.FloatTensor] = None,
labels_attention_mask: Optional[torch.Tensor] = None,
speaker_id: Optional[int] = None,
return_dict: Optional[bool] = True,
) :
if self.config.num_speakers > 1 and speaker_id is not None:
if isinstance(speaker_id, int):
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
speaker_id = torch.tensor(speaker_id, device=self.device)
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
if not (len(speaker_id) == 1 or len(speaker_id == len(labels))):
raise ValueError(
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
)
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
else:
speaker_embeddings = None
if labels_attention_mask is not None:
labels_padding_mask = labels_attention_mask.unsqueeze(1).float()
else:
labels_attention_mask = torch.ones((labels.shape[0], labels.shape[2])).float().to(self.device)
labels_padding_mask = labels_attention_mask.unsqueeze(1)
posterior_latents, posterior_means, posterior_log_variances = self.posterior_encoder(
labels, labels_padding_mask, speaker_embeddings
)
label_lengths = labels_attention_mask.sum(dim=1)
latents_slice, ids_slice = self.rand_slice_segments(posterior_latents,
label_lengths,
segment_size=self.segment_size
)
waveform = self.decoder(latents_slice, speaker_embeddings)
if not return_dict:
outputs = (
labels_padding_mask,
posterior_latents,
posterior_means,
posterior_log_variances,
latents_slice,
ids_slice,
waveform,
)
return outputs
return PosteriorDecoderModelOutput(
labels_padding_mask = labels_padding_mask,
posterior_latents = posterior_latents,
posterior_means = posterior_means,
posterior_log_variances = posterior_log_variances,
latents_slice = latents_slice,
ids_slice = ids_slice,
waveform = waveform,
)
#....................................
def trainer(self,
train_dataset_dir = None,
eval_dataset_dir = None,
full_generation_dir = None,
feature_extractor = VitsFeatureExtractor(),
training_args = None,
full_generation_sample_index= 0,
project_name = "Posterior_Decoder_Finetuning",
wandbKey = "782b6a6e82bbb5a5348de0d3c7d40d1e76351e79",
):
os.makedirs(training_args.output_dir,exist_ok=True)
logger = logging.getLogger(f"{__name__} Training")
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
wandb.login(key= wandbKey)
wandb.init(project= project_name,config = training_args.to_dict())
set_seed(training_args.seed)
# Apply Weight Norm Decoder
self.decoder.apply_weight_norm()
# Save Config
self.config.save_pretrained(training_args.output_dir)
train_dataset = FeaturesCollectionDataset(dataset_dir = train_dataset_dir,
device = self.device
)
eval_dataset = None
if training_args.do_eval:
eval_dataset = FeaturesCollectionDataset(dataset_dir = eval_dataset_dir,
device = self.device
)
full_generation_dataset = FeaturesCollectionDataset(dataset_dir = full_generation_dir,
device = self.device
)
self.full_generation_sample = full_generation_dataset[full_generation_sample_index]
# init optimizer, lr_scheduler
optimizer = torch.optim.AdamW(
self.parameters(),
training_args.learning_rate,
betas=[training_args.adam_beta1, training_args.adam_beta2],
eps=training_args.adam_epsilon,
)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer, gamma=training_args.lr_decay, last_epoch=-1
)
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
#.......................loop training............................
global_step = 0
for epoch in range(training_args.num_train_epochs):
train_losses_sum = 0
lr_scheduler.step()
for step, batch in enumerate(train_dataset):
# forward through model
outputs = self.forward(
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"]
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1]
target_waveform = batch["waveform"].transpose(1, 2)
target_waveform = self.slice_segments(
target_waveform,
outputs.ids_slice * feature_extractor.hop_length,
self.config.segment_size
)
# backpropagate
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
loss = loss_mel.detach().item()
train_losses_sum = train_losses_sum + loss
loss_mel.backward()
optimizer.step()
optimizer.zero_grad()
print(f"TRAINIG - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss}, lr {lr_scheduler.get_last_lr()[0]}... ")
global_step +=1
# validation
do_eval = training_args.do_eval and (global_step % training_args.eval_steps == 0)
if do_eval:
logger.info("Running validation... ")
eval_losses_sum = 0
for step, batch in enumerate(eval_dataset):
with torch.no_grad():
outputs = self.forward(
labels=batch["labels"],
labels_attention_mask=batch["labels_attention_mask"],
speaker_id=batch["speaker_id"]
)
mel_scaled_labels = batch["mel_scaled_input_features"]
mel_scaled_target = self.slice_segments(mel_scaled_labels, outputs.ids_slice,self.segment_size)
mel_scaled_generation = feature_extractor._torch_extract_fbank_features(outputs.waveform.squeeze(1))[1]
loss = loss_mel.detach().item()
eval_losses_sum +=loss
loss_mel = torch.nn.functional.l1_loss(mel_scaled_target, mel_scaled_generation)
print(f"VALIDATION - batch {step}, waveform {(batch['waveform'].shape)}, step_loss_mel {loss} ... ")
with torch.no_grad():
full_generation_sample = self.full_generation_sample
full_generation =self.forward(
labels=full_generation_sample["labels"],
labels_attention_mask=full_generation_sample["labels_attention_mask"],
speaker_id=full_generation_sample["speaker_id"]
)
full_generation_waveform = full_generation.waveform.cpu().numpy()
wandb.log({
"eval_losses": eval_losses_sum,
"full generations samples": [
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}", sample_rate=self.sampling_rate)
for w in full_generation_waveform],})
wandb.log({"train_losses":train_losses_sum})
# add weight norms
self.decoder.remove_weight_norm()
torch.save(self.posterior_encoder.state_dict(), os.path.join(training_args.output_dir,"posterior_encoder.pt"))
torch.save(self.decoder.state_dict(), os.path.join(training_args.output_dir,"decoder.pt"))
logger.info("Running final full generations samples... ")
with torch.no_grad():
full_generation_sample = self.full_generation_sample
full_generation = self.forward(
labels=full_generation_sample["labels"],
labels_attention_mask=full_generation_sample["labels_attention_mask"],
speaker_id=full_generation_sample["speaker_id"]
)
full_generation_waveform = full_generation.waveform.cpu().numpy()
wandb.log({"eval_losses": eval_losses_sum,
"full generations samples": [
wandb.Audio(w.reshape(-1), caption=f"Full generation sample {epoch}",
sample_rate=self.sampling_rate) for w in full_generation_waveform],
})
logger.info("***** Training / Inference Done *****")
#....................................
#....................................