LAHJA-AI / app.py
wasmdashai's picture
Update app.py
e60eceb verified
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer,VitsModel
import os
import numpy as np
token=os.environ.get("key_")
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vtk",token=token)
models= {}
import noisereduce as nr
import torch
from typing import Any, Callable, Optional, Tuple, Union,Iterator
import torch.nn as nn # Import the missing module
def remove_noise_nr(audio_data,sr=16000):
"""يزيل الضوضاء باستخدام مكتبة noisereduce."""
reduced_noise = nr.reduce_noise(y=audio_data,hop_length=256, sr=sr)
return reduced_noise
def _inference_forward_stream(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
padding_mask: Optional[torch.Tensor] = None,
chunk_size: int = 32, # Chunk size for streaming output
is_streaming: bool = True,
) -> Iterator[torch.Tensor]:
"""Generates speech waveforms in a streaming fashion."""
if attention_mask is not None:
padding_mask = attention_mask.unsqueeze(-1).float()
else:
padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
if is_streaming:
for i in range(0, spectrogram.size(-1), chunk_size):
with torch.no_grad():
wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings)
yield wav.squeeze().cpu().numpy()
else:
wav=self.decoder(spectrogram,speaker_embeddings)
yield wav.squeeze().cpu().numpy()
@spaces.GPU
def get_model(name_model):
global models
if name_model in models:
return models[name_model]
models[name_model]=VitsModel.from_pretrained(name_model,token=token).cuda()
models[name_model].decoder.apply_weight_norm()
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
# torch.nn.utils.weight_norm(self.decoder.conv_post)
for flow in models[name_model].flow.flows:
torch.nn.utils.weight_norm(flow.conv_pre)
torch.nn.utils.weight_norm(flow.conv_post)
return models[name_model]
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' 🤔
import torch
TXT="""السلام عليكم ورحمة الله وبركاتة يا هلا وسهلا ومراحب بالغالي اخباركم طيبين ان شاء الله ارحبوا على العين والراس """
@spaces.GPU
def modelspeech(text=TXT,name_model="wasmdashai/vits-ar-sa-huba-v2",speaking_rate=16000):
inputs = tokenizer(text, return_tensors="pt")
model=get_model(name_model)
model.speaking_rate=speaking_rate
with torch.no_grad():
wav=list(_inference_forward_stream(model,input_ids=inputs.input_ids.cuda(),attention_mask=inputs.attention_mask.cuda(),speaker_embeddings= None,is_streaming=False))[0]
# with torch.no_grad():
# wav = model(input_ids=inputs["input_ids"].cuda()).waveform.cpu().numpy().reshape(-1)#.detach()
return (model.config.sampling_rate,wav),(model.config.sampling_rate,remove_noise_nr(wav))
model_choices = gr.Dropdown(
choices=[
"wasmdashai/vits-ar-sa-huba-v1",
"wasmdashai/vits-ar-sa-huba-v2",
"wasmdashai/vits-ar-sa-A",
"wasmdashai/vits-ar-ye-sa",
"wasmdashai/vits-ar-sa-M-v1",
"wasmdashai/vits-ar-sa-M-v2"
],
label="اختر النموذج",
value="wasmdashai/vits-ar-sa-huba-v2",
)
demo = gr.Interface(fn=modelspeech, inputs=["text",model_choices,gr.Slider(0, 1, step=0.1,value=0.8)], outputs=["audio","audio"])
demo.queue()
demo.launch()