Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import json | |
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS, CUSTOM_MESSAGE | |
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub | |
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message | |
from datetime import datetime, timezone | |
LAST_UPDATED = "Sep 9th 2023" | |
column_names = { | |
"MODEL": "Model", | |
"Avg. WER": "Average WER ⬇️", | |
"RTF": "RTF (1e-3) ⬇️", | |
"Common Voice WER": "Common Voice WER ⬇️", | |
"D_AVG_CV_WER": "Delta AVG-CV WER", | |
} | |
# Skipping testings just uing the numbers computed in the original space for my sanity sake | |
# eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub() | |
# if not csv_results.exists(): | |
# raise Exception(f"CSV file {csv_results} does not exist locally") | |
# # Get csv with data and parse columns | |
# original_df = pd.read_csv(csv_results) | |
data = [ | |
["nvidia/stt_en_fastconformer_transducer_xlarge", | |
12.3, 8.06, 7.26], | |
["nvidia/stt_en_fastconformer_transducer_xxlarge", | |
14.4, 8.07, 6.07], | |
["openai/whisper-large-v2", | |
12.7, 8.16, 10.12], | |
["nvidia/stt_en_fastconformer_ctc_xxlarge", | |
5, 8.34, 8.31], | |
["nvidia/stt_en_conformer_ctc_large", | |
7.5, 8.39, 9.1], | |
["openai/whisper-medium.en", | |
10.7, 8.5, 11.96], | |
["nvidia/stt_en_fastconformer_ctc_xlarge", | |
2.9, 8.52, 7.51], | |
["nvidia/stt_en_fastconformer_ctc_large", | |
1.8, 8.9, 8.56], | |
["nvidia/stt_en_fastconformer_transducer_large", | |
10.4, 8.94, 8.04], | |
["openai/whisper-large", | |
12.7, 9.2, 10.92], | |
["nvidia/stt_en_conformer_transducer_large", | |
21.8, 9.27, 7.36], | |
["openai/whisper-small.en", | |
8.3, 9.34, 15.13], | |
["nvidia/stt_en_conformer_transducer_small", | |
17.7, 10.81, 14.35], | |
["openai/whisper-base.en", | |
7.2, 11.67, 21.77], | |
["nvidia/stt_en_conformer_ctc_small", | |
3.2, 11.77, 16.59], | |
["patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram", | |
20.1, 13.65, 20.05], | |
["facebook/wav2vec2-large-960h-lv60-self", | |
2.5, 14.47, 22.15], | |
["openai/whisper-tiny.en", | |
9.1, 14.96, 31.09], | |
["patrickvonplaten/hubert-xlarge-ls960-ft-4-gram", | |
24.5, 15.11, 19.16], | |
["speechbrain/asr-wav2vec2-librispeech", | |
2.6, 15.61, 23.71], | |
["facebook/hubert-xlarge-ls960-ft", | |
6.3, 15.81, 22.05], | |
["facebook/mms-1b-all", | |
5.9, 15.85, 21.23], | |
["facebook/hubert-large-ls960-ft", | |
2.6, 15.93, 23.12], | |
["facebook/wav2vec2-large-robust-ft-libri-960h", | |
2.7, 16.07, 22.57], | |
["facebook/wav2vec2-conformer-rel-pos-large-960h-ft", | |
5.2, 17, 23.01], | |
["facebook/wav2vec2-conformer-rope-large-960h-ft", | |
7.8, 17.06, 23.08], | |
["facebook/wav2vec2-large-960h", | |
1.8, 21.76, 34.01], | |
["facebook/wav2vec2-base-960h", | |
1.2, 26.41, 41.75] | |
] | |
columns = [ | |
"Model", "RTF (1e-3) ⬇️", "Average WER ⬇️", "Common Voice WER ⬇️" | |
] | |
original_df = pd.DataFrame(data, columns=columns) | |
# Formats the columns | |
def formatter(x): | |
x = round(x, 2) | |
return x | |
for col in original_df.columns: | |
if col.lower() == "model": | |
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) | |
else: | |
original_df[col] = original_df[col].apply(formatter) # For numerical values | |
original_df.rename(columns=column_names, inplace=True) | |
# Compute delta between average WER and CV WER | |
original_df['Abs. Detla WER'] = abs(original_df['Average WER ⬇️'] - original_df['Common Voice WER ⬇️']) | |
original_df['Abs. Detla WER'] = pd.to_numeric(original_df['Abs. Detla WER'], errors='coerce') # Convert to numerical data type | |
original_df['Abs. Detla WER'] = original_df['Abs. Detla WER'].apply(lambda x: round(x, 2) if not pd.isna(x) else x) # Round and handle NaN values | |
original_df.sort_values(by='Abs. Detla WER', inplace=True) | |
COLS = [c.name for c in fields(AutoEvalColumn)] | |
TYPES = [c.type for c in fields(AutoEvalColumn)] | |
def request_model(model_text, chbcoco2017): | |
# Determine the selected checkboxes | |
dataset_selection = [] | |
if chbcoco2017: | |
dataset_selection.append("ESB Datasets tests only") | |
if len(dataset_selection) == 0: | |
return styled_error("You need to select at least one dataset") | |
base_model_on_hub, error_msg = is_model_on_hub(model_text) | |
if not base_model_on_hub: | |
return styled_error(f"Base model '{model_text}' {error_msg}") | |
# Construct the output dictionary | |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
required_datasets = ', '.join(dataset_selection) | |
eval_entry = { | |
"date": current_time, | |
"model": model_text, | |
"datasets_selected": required_datasets | |
} | |
# Prepare file path | |
DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True) | |
fn_datasets = '@ '.join(dataset_selection) | |
filename = model_text.replace("/","@") + "@@" + fn_datasets | |
if filename in requested_models: | |
return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.") | |
try: | |
filename_ext = filename + ".txt" | |
out_filepath = DIR_OUTPUT_REQUESTS / filename_ext | |
# Write the results to a text file | |
with open(out_filepath, "w") as f: | |
f.write(json.dumps(eval_entry)) | |
upload_file(filename, out_filepath) | |
# Include file in the list of uploaded files | |
requested_models.append(filename) | |
# Remove the local file | |
out_filepath.unlink() | |
return styled_message("🤗 Your request has been submitted and will be evaluated soon!</p>") | |
except Exception as e: | |
return styled_error(f"Error submitting request!") | |
with gr.Blocks() as demo: | |
gr.HTML(BANNER, elem_id="banner") | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
gr.Markdown(CUSTOM_MESSAGE, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0): | |
leaderboard_table = gr.components.Dataframe( | |
value=original_df, | |
datatype=TYPES, | |
max_rows=None, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
with gr.TabItem("📈 Metrics", elem_id="od-benchmark-tab-table", id=1): | |
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("✉️✨ Request a model here!", elem_id="od-benchmark-tab-table", id=2): | |
with gr.Column(): | |
gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text") | |
with gr.Column(): | |
gr.Markdown("Select a dataset:", elem_classes="markdown-text") | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)") | |
chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset", visible=False, value=True, interactive=False) | |
with gr.Column(): | |
mdw_submission_result = gr.Markdown() | |
btn_submitt = gr.Button(value="🚀 Request") | |
btn_submitt.click(request_model, | |
[model_name_textbox, chb_coco2017], | |
mdw_submission_result) | |
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Accordion("📙 Citation", open=False): | |
gr.Textbox( | |
value=CITATION_TEXT, lines=7, | |
label="Copy the BibTeX snippet to cite this source", | |
elem_id="citation-button", | |
).style(show_copy_button=True) | |
demo.launch() | |