FaceRecogTUKL / app.py
wasay's picture
Update app.py
ee077e8 verified
raw
history blame
4.55 kB
import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from scipy.spatial.distance import cosine
import gradio as gr
from tensorflow.keras.models import Model
from tensorflow.keras.models import load_model
from tensorflow.saved_model import load
import pathlib
from fastai.vision.all import *
from fastai.imports import *
from tensorflow.keras.models import model_from_json
from mtcnn.mtcnn import MTCNN
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
model.load_weights('model.h5')
plt = platform.system()
if plt == 'Linux':
pathlib.WindowsPath = pathlib.PosixPath
def img_to_encoding(image_path, model):
img = Image.open(image_path)
if img is not None:
img = np.array(img)
img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)
x = np.expand_dims(img, axis=0)
embedding = model.predict(x)[0, :]
print(embedding)
return embedding
database = {}
database["dr adnan"] = img_to_encoding(
"86055fdb-7441-422e-b501-ffac2221dae0.jpg", model)
database["wasay"] = img_to_encoding("Wasay (1).jpg", model)
database["fatima"] = img_to_encoding("IMG_20220826_095746.jpg", model)
database["omer"] = img_to_encoding("Omer_1.jpg", model)
database["saad"] = img_to_encoding("IMG20220825113812.jpg", model)
database["waleed"] = img_to_encoding("IMG_20220825_113352.jpg", model)
database["talha"] = img_to_encoding("IMG20220825113526.jpg", model)
database["asfand"] = img_to_encoding("imgAsfand.jpg", model)
database["afrasiyab"] = img_to_encoding("imgAfra.jpg", model)
def who_is_it(image):
# START CODE HERE
# Step 1: Compute the target "encoding" for the image. Use img_to_encoding() see example above. ## (β‰ˆ 1 line)
if image is not None:
img = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)
x = np.expand_dims(img, axis=0)
encoding = model.predict(x)[0, :]
## Step 2: Find the closest encoding ##
# Initialize "min_dist" to a large value, say 100 (β‰ˆ1 line)
min_dist = 10000000
identity = "Not in the database"
# Loop over the database dictionary's names and encodings.
for (name, db_enc) in database.items():
# Compute L2 distance between the target "encoding" and the current db_enc from the database. (β‰ˆ 1 line)
dist = cosine(db_enc, encoding)
print(dist)
# If this distance is less than the min_dist, then set min_dist to dist, and identity to name. (β‰ˆ 3 lines)
if dist < min_dist:
min_dist = dist
identity = name
# END CODE HERE
if min_dist < 0.4:
return min_dist, identity
else:
return min_dist, ("Not in database")
def remove(Id):
del database[Id]
return Id + " removed successfully"
def add_new(newImg,newId):
if ((newImg is not None) and (newId is not None)):
faceModel = MTCNN()
faces=faceModel.detect_faces(newImg)
newImg=newImg[:,:,::-1]
for face in faces:
x,y,w,h = face["box"]
img=newImg[y:y+h,x:x+w]
if img is not None:
img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_AREA)
x = np.expand_dims(img, axis=0)
embedding = model.predict(x)[0, :]
database[str(newId)]=embedding
return newId + " added successfully!"
label = gr.outputs.Label()
faceModel=MTCNN()
def recog(image):
faces = faceModel.detect_faces(image)
image = image[:,:,::-1]
min_dist=1000
for face in faces:
x,y,w,h = face["box"]
img = image[y:y+h, x:x+w]
if img is not None:
dist, identity=who_is_it(img)
if(dist<min_dist):
min_dist=dist
min_identity=identity
if(min_dist!=1000):
if min_identity!="Not in database":
return "Welcome to the Lab "+min_identity
else:
return "Sorry, we could not recognize you"
else:
return "No face found"
intf_del=gr.Interface(fn=remove, inputs=gr.Textbox(), outputs=label)
intf_recog = gr.Interface(fn=recog, inputs=gr.Image(type="numpy"), outputs=label)
intf_add = gr.Interface(fn=add_new, inputs=[gr.Image(type="numpy"),gr.Textbox()], outputs=label)
demo = gr.TabbedInterface([intf_recog, intf_add, intf_del], ["Recognize!", "Add New!", "Delete!"])
demo.launch(inline=False)