Wuerstchen / app.py
dome272's picture
add compel support
7c92d6d
raw
history blame
8.45 kB
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from typing import List
from diffusers.utils import numpy_to_pil
from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
from diffusers.pipelines.wuerstchen import WuerstchenPrior, DEFAULT_STAGE_C_TIMESTEPS
from previewer.modules import Previewer
from compel import Compel
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
DESCRIPTION = "# Würstchen"
DESCRIPTION += "\n<p style=\"text-align: center\"><a href='https://huggingface.co/warp-ai/wuerstchen' target='_blank'>Würstchen</a> is a new fast and efficient high resolution text-to-image architecture and model</p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
PREVIEW_IMAGES = True
dtype = torch.float16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
prior_pipeline = WuerstchenPriorPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=dtype)
decoder_pipeline = WuerstchenDecoderPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=dtype)
if ENABLE_CPU_OFFLOAD:
prior_pipeline.enable_model_cpu_offload()
decoder_pipeline.enable_model_cpu_offload()
else:
prior_pipeline.to(device)
decoder_pipeline.to(device)
if USE_TORCH_COMPILE:
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="reduce-overhead", fullgraph=True)
if PREVIEW_IMAGES:
previewer = Previewer()
previewer.load_state_dict(torch.load("previewer/text2img_wurstchen_b_v1_previewer_100k.pt")["state_dict"])
previewer.eval().requires_grad_(False).to(device).to(dtype)
def callback_prior(i, t, latents):
output = previewer(latents)
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).cpu().numpy())
return output
else:
previewer = None
callback_prior = None
compel_proc = Compel(tokenizer=prior_pipeline.tokenizer, text_encoder=prior_pipeline.text_encoder)
else:
prior_pipeline = None
decoder_pipeline = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
prior_num_inference_steps: int = 60,
# prior_timesteps: List[float] = None,
prior_guidance_scale: float = 4.0,
decoder_num_inference_steps: int = 12,
# decoder_timesteps: List[float] = None,
decoder_guidance_scale: float = 0.0,
num_images_per_prompt: int = 2,
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
print("Running compel")
prompt_embeds = compel_proc(prompt)
negative_prompt_embeds = compel_proc(negative_prompt)
prior_output = prior_pipeline(
prompt_embeds=prompt_embeds,
height=height,
width=width,
timesteps=DEFAULT_STAGE_C_TIMESTEPS,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=prior_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
callback=callback_prior,
)
if PREVIEW_IMAGES:
for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)):
r = next(prior_output)
if isinstance(r, list):
yield r
prior_output = r
decoder_output = decoder_pipeline(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
num_inference_steps=decoder_num_inference_steps,
# timesteps=decoder_timesteps,
guidance_scale=decoder_guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
output_type="pil",
).images
yield decoder_output
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a Negative Prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
num_images_per_prompt = gr.Slider(
label="Number of Images",
minimum=1,
maximum=6,
step=1,
value=2,
)
with gr.Row():
prior_guidance_scale = gr.Slider(
label="Prior Guidance Scale",
minimum=0,
maximum=20,
step=0.1,
value=4.0,
)
prior_num_inference_steps = gr.Slider(
label="Prior Inference Steps",
minimum=10,
maximum=100,
step=1,
value=60,
)
decoder_guidance_scale = gr.Slider(
label="Decoder Guidance Scale",
minimum=0,
maximum=20,
step=0.1,
value=0.0,
)
decoder_num_inference_steps = gr.Slider(
label="Decoder Inference Steps",
minimum=10,
maximum=100,
step=1,
value=12,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
prior_num_inference_steps,
# prior_timesteps,
prior_guidance_scale,
decoder_num_inference_steps,
# decoder_timesteps,
decoder_guidance_scale,
num_images_per_prompt,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name=False,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()