Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ with open("embeddings.npy", 'rb') as f:
|
|
19 |
|
20 |
def get_recommend(user_input,
|
21 |
top_k_spec = 3,
|
22 |
-
top_k_services =
|
23 |
treshold = 0.8):
|
24 |
|
25 |
cols_for_top_k = ["Специальность врача",
|
@@ -41,15 +41,33 @@ def get_recommend(user_input,
|
|
41 |
for col in cols_for_top_k:
|
42 |
result[col] = sorted_df[col].value_counts()[:top_k_spec].index.tolist()
|
43 |
result['Жалобы'] = sorted_df['Жалобы'].value_counts()[:top_k_services].index.tolist()
|
44 |
-
result['Диагноз МКБ'] = sorted_df['Диагноз МКБ'].value_counts()[:top_k_services].index.tolist()
|
45 |
|
46 |
-
|
|
|
|
|
47 |
categories = ['Инструментальная диагностика', 'Лабораторная диагностика']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
for category in categories:
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
result['Рекомендации по обследованию'] =
|
|
|
53 |
|
54 |
return result
|
55 |
#%%
|
|
|
19 |
|
20 |
def get_recommend(user_input,
|
21 |
top_k_spec = 3,
|
22 |
+
top_k_services = 10,
|
23 |
treshold = 0.8):
|
24 |
|
25 |
cols_for_top_k = ["Специальность врача",
|
|
|
41 |
for col in cols_for_top_k:
|
42 |
result[col] = sorted_df[col].value_counts()[:top_k_spec].index.tolist()
|
43 |
result['Жалобы'] = sorted_df['Жалобы'].value_counts()[:top_k_services].index.tolist()
|
|
|
44 |
|
45 |
+
top_k_mkb = sorted_df['Диагноз МКБ'].value_counts()[:top_k_services].index.tolist()
|
46 |
+
result['Диагноз МКБ'] = top_k_mkb
|
47 |
+
|
48 |
categories = ['Инструментальная диагностика', 'Лабораторная диагностика']
|
49 |
+
|
50 |
+
top_k_services_lst_by_mkb = []
|
51 |
+
for mkb in top_k_mkb:
|
52 |
+
temp_lst = []
|
53 |
+
slice_df = sorted_df[sorted_df['Диагноз МКБ'] == mkb]
|
54 |
+
for category in categories:
|
55 |
+
top_k_services_in_cat_mkb = slice_df[slice_df['service_name_category'] == category]['Рекомендации по обследованию'].value_counts()[:top_k_services].index.tolist()
|
56 |
+
temp_lst.append({category:top_k_services_in_cat_mkb})
|
57 |
+
|
58 |
+
top_k_services_lst_by_mkb.append({mkb:temp_lst})
|
59 |
+
|
60 |
+
top_k_services_lst = []
|
61 |
+
|
62 |
for category in categories:
|
63 |
+
slice_df = sorted_df[sorted_df['service_name_category'] == category]
|
64 |
+
list_top_k_services = slice_df['Рекомендации по обследованию'].value_counts()[:top_k_services].index.tolist()
|
65 |
+
top_k_services_lst.append({category:list_top_k_services})
|
66 |
+
|
67 |
+
|
68 |
|
69 |
+
result['Рекомендации по обследованию'] = top_k_services_lst
|
70 |
+
result['Рекомендации по обследованию по МКБ'] = top_k_services_lst_by_mkb
|
71 |
|
72 |
return result
|
73 |
#%%
|