Spaces:
Running
Running
Upload 6 files
Browse files- animation.ipynb +66 -0
- app.py +440 -0
- config.json +0 -0
- dataset_formation.ipynb +524 -0
- image_experimentation.ipynb +0 -0
- new intent_model.ipynb +0 -0
animation.ipynb
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"\n",
|
10 |
+
"import json \n",
|
11 |
+
"import requests \n",
|
12 |
+
" \n",
|
13 |
+
"import streamlit as st \n",
|
14 |
+
"from streamlit_lottie import st_lottie \n",
|
15 |
+
"import os\n",
|
16 |
+
"folder_path = \"lotte_animation_saver/\"\n",
|
17 |
+
"\n",
|
18 |
+
"# Get the list of all files in the folder\n",
|
19 |
+
"file_names = os.listdir(folder_path)\n",
|
20 |
+
"max_file_name=max([int(i.split(\"_\")[-1][:-5]) for i in file_names]) \n",
|
21 |
+
"url = requests.get( \n",
|
22 |
+
" \"https://lottie.host/34b4b005-c8c9-4d57-a0fd-0e9ed3b49835/nCkgflSg9J.json\") \n",
|
23 |
+
"# Creating a blank dictionary to store JSON file, \n",
|
24 |
+
"# as their structure is similar to Python Dictionary \n",
|
25 |
+
"url_json = dict() \n",
|
26 |
+
" \n",
|
27 |
+
"if url.status_code == 200: \n",
|
28 |
+
"\n",
|
29 |
+
" url_json = url.json() \n",
|
30 |
+
" with open(\"lotte_animation_saver/animation_\"+str(max_file_name+1)+\".json\",\"w\") as read:\n",
|
31 |
+
" json.dump(url_json,read,indent=2)\n",
|
32 |
+
"\n",
|
33 |
+
"else: \n",
|
34 |
+
" print(\"Error in the URL\") "
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": []
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"metadata": {
|
46 |
+
"kernelspec": {
|
47 |
+
"display_name": "env",
|
48 |
+
"language": "python",
|
49 |
+
"name": "python3"
|
50 |
+
},
|
51 |
+
"language_info": {
|
52 |
+
"codemirror_mode": {
|
53 |
+
"name": "ipython",
|
54 |
+
"version": 3
|
55 |
+
},
|
56 |
+
"file_extension": ".py",
|
57 |
+
"mimetype": "text/x-python",
|
58 |
+
"name": "python",
|
59 |
+
"nbconvert_exporter": "python",
|
60 |
+
"pygments_lexer": "ipython3",
|
61 |
+
"version": "3.12.4"
|
62 |
+
}
|
63 |
+
},
|
64 |
+
"nbformat": 4,
|
65 |
+
"nbformat_minor": 2
|
66 |
+
}
|
app.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from PIL import Image
|
3 |
+
import streamlit as st
|
4 |
+
import cv2
|
5 |
+
from streamlit_drawable_canvas import st_canvas
|
6 |
+
import torch
|
7 |
+
from diffusers import AutoPipelineForInpainting
|
8 |
+
import numpy as np
|
9 |
+
from streamlit_image_select import image_select
|
10 |
+
import os
|
11 |
+
import requests
|
12 |
+
from streamlit_navigation_bar import st_navbar
|
13 |
+
from langchain_community.llms import Ollama
|
14 |
+
import base64
|
15 |
+
from io import BytesIO
|
16 |
+
from PIL import Image, ImageDraw
|
17 |
+
from streamlit_lottie import st_lottie
|
18 |
+
from streamlit_option_menu import option_menu
|
19 |
+
import json
|
20 |
+
from transformers import pipeline
|
21 |
+
import streamlit as st
|
22 |
+
from streamlit_modal import Modal
|
23 |
+
import streamlit.components.v1 as components
|
24 |
+
from datetime import datetime
|
25 |
+
|
26 |
+
def image_to_base64(image_path):
|
27 |
+
with open(image_path, "rb") as img_file:
|
28 |
+
return base64.b64encode(img_file.read()).decode()
|
29 |
+
|
30 |
+
|
31 |
+
@st.cache_resource
|
32 |
+
def load_model():
|
33 |
+
pipeline_ = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16).to("cuda")
|
34 |
+
return pipeline_
|
35 |
+
|
36 |
+
# @st.cache_resource
|
37 |
+
def prompt_improvment(pre_prompt):
|
38 |
+
|
39 |
+
llm = Ollama(model="llama3:latest",num_ctx=1000)
|
40 |
+
enhancement="Please use details from the prompt mentioned above, focusing only what user is thinking with the prompt and also add 8k resolution. Its a request only provide image description and brief prompt no other text."
|
41 |
+
prompt = pre_prompt+"\n"+enhancement
|
42 |
+
# result = llm.invoke(prompt)
|
43 |
+
return llm.stream(prompt)
|
44 |
+
def numpy_to_list(array):
|
45 |
+
|
46 |
+
current=[]
|
47 |
+
for value in array:
|
48 |
+
if isinstance(value,type(np.array([]))):
|
49 |
+
result=numpy_to_list(value)
|
50 |
+
current.append(result)
|
51 |
+
else:
|
52 |
+
|
53 |
+
current.append(int(value))
|
54 |
+
return current
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
@st.cache_resource
|
59 |
+
def llm_text_response():
|
60 |
+
llm = Ollama(model="llama3:latest",num_ctx=1000)
|
61 |
+
return llm.stream
|
62 |
+
|
63 |
+
def model_single_out(prompt):
|
64 |
+
pipe=load_model()
|
65 |
+
image = pipe(prompt).images[0]
|
66 |
+
return image
|
67 |
+
|
68 |
+
def model_out_put(init_image,mask_image,prompt,negative_prompt):
|
69 |
+
pipeline_ = load_model()
|
70 |
+
image = pipeline_(prompt=prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask_image).images[0]
|
71 |
+
return image
|
72 |
+
|
73 |
+
@st.cache_resource
|
74 |
+
def multimodel():
|
75 |
+
pipeline_ = pipeline("text-classification", model = "model_collection\model_4")
|
76 |
+
return pipeline_
|
77 |
+
|
78 |
+
def multimodel_output(prompt):
|
79 |
+
pipeline_ = multimodel()
|
80 |
+
image = pipeline_(prompt)
|
81 |
+
return image[0]['label']
|
82 |
+
|
83 |
+
def d4_to_3d(image):
|
84 |
+
formatted_array=[]
|
85 |
+
for j in image:
|
86 |
+
neste_list=[]
|
87 |
+
for k in j:
|
88 |
+
if any([True if i>0 else False for i in k]):
|
89 |
+
neste_list.append(True)
|
90 |
+
else:
|
91 |
+
neste_list.append(False)
|
92 |
+
formatted_array.append(neste_list)
|
93 |
+
print(np.shape(formatted_array))
|
94 |
+
return np.array(formatted_array)
|
95 |
+
|
96 |
+
st.set_page_config(layout="wide")
|
97 |
+
|
98 |
+
|
99 |
+
img_selection=None
|
100 |
+
# Specify canvas parameters in application
|
101 |
+
drawing_mode = st.sidebar.selectbox(
|
102 |
+
"Drawing tool:", ("freedraw","point", "line", "rect", "circle", "transform")
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
dictionary=st.session_state
|
107 |
+
if "every_prompt_with_val" not in dictionary:
|
108 |
+
dictionary['every_prompt_with_val']=[]
|
109 |
+
if "current_image" not in dictionary:
|
110 |
+
dictionary['current_image']=[]
|
111 |
+
if "prompt_collection" not in dictionary:
|
112 |
+
dictionary['prompt_collection']=[]
|
113 |
+
if "user" not in dictionary:
|
114 |
+
dictionary['user']=None
|
115 |
+
if "current_session" not in dictionary:
|
116 |
+
dictionary['current_session']=None
|
117 |
+
|
118 |
+
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 20)
|
119 |
+
if drawing_mode == 'point':
|
120 |
+
point_display_radius = st.sidebar.slider("Point display radius: ", 1, 25, 3)
|
121 |
+
stroke_color = '#000000'
|
122 |
+
bg_color = "#eee"
|
123 |
+
|
124 |
+
|
125 |
+
column1,column2=st.columns([0.7,0.35])
|
126 |
+
|
127 |
+
with open("DataBase\datetimeRecords.json","r") as read:
|
128 |
+
dateTimeRecord=json.load(read)
|
129 |
+
with column2:
|
130 |
+
st.header("HISTORY")
|
131 |
+
tab1,tab2,tab3,tab4=st.tabs(["CHAT HISTORY","IMAGES","PROMPT IMPROVEMENT","LOGIN"])
|
132 |
+
with tab1:
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
if not len(dictionary['every_prompt_with_val']):
|
137 |
+
st.header("I will store all the chat for the current session")
|
138 |
+
with open("lotte_animation_saver\\animation_4.json") as read:
|
139 |
+
url_json=json.load(read)
|
140 |
+
st_lottie(url_json,height = 400)
|
141 |
+
else:
|
142 |
+
|
143 |
+
with st.container(height=600):
|
144 |
+
|
145 |
+
|
146 |
+
for index,prompts_ in enumerate(dictionary['every_prompt_with_val'][::-1]):
|
147 |
+
if prompts_[-1]=="@working":
|
148 |
+
if index==0:
|
149 |
+
st.write(prompts_[0].upper())
|
150 |
+
data_need=st.write_stream(llm_text_response()(prompts_[0]))
|
151 |
+
dictionary['every_prompt_with_val'][-1]=(prompts_[0],str(data_need))
|
152 |
+
|
153 |
+
elif isinstance(prompts_[-1],str):
|
154 |
+
if index==0:
|
155 |
+
st.text_area(label=prompts_[0].upper(),value=prompts_[-1],height=500)
|
156 |
+
else:
|
157 |
+
st.text_area(label=prompts_[0].upper(),value=prompts_[-1])
|
158 |
+
|
159 |
+
else:
|
160 |
+
st.write(prompts_[0].upper())
|
161 |
+
with st.container(height=400):
|
162 |
+
format1,format2=st.columns([0.2,0.8])
|
163 |
+
with format1:
|
164 |
+
new_img=Image.open("ALL_image_formation\image_gen.png")
|
165 |
+
st.write("<br>",unsafe_allow_html=True)
|
166 |
+
size = min(new_img.size)
|
167 |
+
mask = Image.new('L', (size, size), 0)
|
168 |
+
draw = ImageDraw.Draw(mask)
|
169 |
+
draw.ellipse((0, 0, size, size), fill=255)
|
170 |
+
|
171 |
+
image = new_img.crop((0, 0, size, size))
|
172 |
+
image.putalpha(mask)
|
173 |
+
st.image(image)
|
174 |
+
with format2:
|
175 |
+
|
176 |
+
st.write("<br>",unsafe_allow_html=True)
|
177 |
+
size = min(prompts_[-1].size)
|
178 |
+
mask = Image.new('L', (size, size), 0)
|
179 |
+
draw = ImageDraw.Draw(mask)
|
180 |
+
draw.ellipse((0, 0, size, size), fill=255)
|
181 |
+
|
182 |
+
# Crop the image to a square and apply the mask
|
183 |
+
image = prompts_[-1].crop((0, 0, size, size))
|
184 |
+
image.putalpha(mask)
|
185 |
+
st.image(image)
|
186 |
+
|
187 |
+
with tab2:
|
188 |
+
|
189 |
+
if "current_image" in dictionary and len(dictionary['current_image']):
|
190 |
+
with st.container(height=600):
|
191 |
+
dictinory_length=len(dictionary['current_image'])
|
192 |
+
|
193 |
+
img_selection = image_select(
|
194 |
+
label="",
|
195 |
+
images=dictionary['current_image'] if len(dictionary['current_image'])!=0 else None,
|
196 |
+
)
|
197 |
+
if img_selection in dictionary['current_image']:
|
198 |
+
dictionary['current_image'].remove(img_selection)
|
199 |
+
dictionary['current_image'].insert(0,img_selection)
|
200 |
+
# st.rerun()
|
201 |
+
|
202 |
+
img_selection.save("image.png")
|
203 |
+
with open("image.png", "rb") as file:
|
204 |
+
downl=st.download_button(label="DOWNLOAD",data=file,file_name="image.png",mime="image/png")
|
205 |
+
os.remove("image.png")
|
206 |
+
else:
|
207 |
+
|
208 |
+
st.header("This section will store the updated images")
|
209 |
+
with open("lotte_animation_saver\\animation_1.json") as read:
|
210 |
+
url_json=json.load(read)
|
211 |
+
st_lottie(url_json,height = 400)
|
212 |
+
with tab3:
|
213 |
+
if len(dictionary['prompt_collection'])!=0:
|
214 |
+
with st.container(height=600):
|
215 |
+
prompt_selection=st.selectbox(label="Select the prompt for improvment",options=["Mention below are prompt history"]+dictionary["prompt_collection"],index=0)
|
216 |
+
|
217 |
+
if prompt_selection!="Mention below are prompt history":
|
218 |
+
|
219 |
+
generated_prompt=prompt_improvment(prompt_selection)
|
220 |
+
dictionary['generated_image_prompt'].append(generated_prompt)
|
221 |
+
st.write_stream(generated_prompt)
|
222 |
+
|
223 |
+
else:
|
224 |
+
|
225 |
+
st.header("This section will provide prompt improvement section")
|
226 |
+
with open("lotte_animation_saver\\animation_3.json") as read:
|
227 |
+
url_json=json.load(read)
|
228 |
+
st_lottie(url_json,height = 400)
|
229 |
+
with tab4:
|
230 |
+
|
231 |
+
# with st.container(height=600):
|
232 |
+
|
233 |
+
if not dictionary['user'] :
|
234 |
+
with st.form("my_form"):
|
235 |
+
# st.header("Please login for save your data")
|
236 |
+
with open("lotte_animation_saver\\animation_5.json") as read:
|
237 |
+
url_json=json.load(read)
|
238 |
+
st_lottie(url_json,height = 200)
|
239 |
+
user_id = st.text_input("user login")
|
240 |
+
password = st.text_input("password",type="password")
|
241 |
+
submitted_login = st.form_submit_button("Submit")
|
242 |
+
# Every form must have a submit button.
|
243 |
+
|
244 |
+
if submitted_login:
|
245 |
+
with open("DataBase\login.json","r") as read:
|
246 |
+
login_base=json.load(read)
|
247 |
+
if user_id in login_base and login_base[user_id]==password:
|
248 |
+
dictionary['user']=user_id
|
249 |
+
st.rerun()
|
250 |
+
else:
|
251 |
+
st.error("userid or password incorrect")
|
252 |
+
|
253 |
+
st.write("working")
|
254 |
+
modal = Modal(
|
255 |
+
"Sign up",
|
256 |
+
key="demo-modal",
|
257 |
+
|
258 |
+
padding=10, # default value
|
259 |
+
max_width=600 # default value
|
260 |
+
)
|
261 |
+
open_modal = st.button("sign up")
|
262 |
+
if open_modal:
|
263 |
+
modal.open()
|
264 |
+
|
265 |
+
if modal.is_open():
|
266 |
+
with modal.container():
|
267 |
+
|
268 |
+
with st.form("my_form1"):
|
269 |
+
sign_up_column_left,sign_up_column_right=st.columns(2)
|
270 |
+
with sign_up_column_left:
|
271 |
+
with open("lotte_animation_saver\\animation_6.json") as read:
|
272 |
+
url_json=json.load(read)
|
273 |
+
st_lottie(url_json,height = 200)
|
274 |
+
|
275 |
+
with sign_up_column_right:
|
276 |
+
user_id = st.text_input("user login")
|
277 |
+
password = st.text_input("password",type="password")
|
278 |
+
submitted_signup = st.form_submit_button("Submit")
|
279 |
+
|
280 |
+
if submitted_signup:
|
281 |
+
with open("DataBase\login.json","r") as read:
|
282 |
+
login_base=json.load(read)
|
283 |
+
if not login_base:
|
284 |
+
login_base={}
|
285 |
+
if user_id not in login_base:
|
286 |
+
login_base[user_id]=password
|
287 |
+
with open("DataBase\login.json","w") as write:
|
288 |
+
json.dump(login_base,write,indent=2)
|
289 |
+
st.success("you are a part now")
|
290 |
+
dictionary['user']=user_id
|
291 |
+
modal.close()
|
292 |
+
else:
|
293 |
+
st.error("user id already exists")
|
294 |
+
else:
|
295 |
+
st.header("REPORTED ISSUES")
|
296 |
+
with st.container(height=370):
|
297 |
+
|
298 |
+
with open("DataBase\datetimeRecords.json") as feedback:
|
299 |
+
temp_issue=json.load(feedback)
|
300 |
+
|
301 |
+
arranged_feedback=reversed(temp_issue['database'])
|
302 |
+
|
303 |
+
for report in arranged_feedback:
|
304 |
+
user_columns,user_feedback=st.columns([0.3,0.8])
|
305 |
+
|
306 |
+
with user_columns:
|
307 |
+
st.write(report[-1])
|
308 |
+
with user_feedback:
|
309 |
+
st.write(report[1])
|
310 |
+
|
311 |
+
feedback=st.text_area("Feedback Report and Improvement",placeholder="")
|
312 |
+
summit=st.button("submit")
|
313 |
+
if summit:
|
314 |
+
with open("DataBase\datetimeRecords.json","r") as feedback_sumit:
|
315 |
+
temp_issue_submit=json.load(feedback_sumit)
|
316 |
+
if "database" not in temp_issue_submit:
|
317 |
+
temp_issue_submit["database"]=[]
|
318 |
+
temp_issue_submit["database"].append((str(datetime.now()),feedback,dictionary['user']))
|
319 |
+
with open("DataBase\datetimeRecords.json","w") as feedback_sumit:
|
320 |
+
json.dump(temp_issue_submit,feedback_sumit)
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
+
# st.rerun()
|
325 |
+
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
bg_image = st.sidebar.file_uploader("PLEASE UPLOAD IMAGE FOR EDITING:", type=["png", "jpg"])
|
332 |
+
bg_doc = st.sidebar.file_uploader("PLEASE UPLOAD DOC FOR PPT/PDF/STORY:", type=["pdf","xlsx"])
|
333 |
+
|
334 |
+
|
335 |
+
if "bg_image" not in dictionary:
|
336 |
+
dictionary["bg_image"]=None
|
337 |
+
|
338 |
+
if img_selection and dictionary['bg_image']==bg_image:
|
339 |
+
gen_image=dictionary['current_image'][0]
|
340 |
+
else:
|
341 |
+
if bg_image:
|
342 |
+
gen_image=Image.open(bg_image)
|
343 |
+
else:
|
344 |
+
gen_image=None
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
with column1:
|
352 |
+
# Create a canvas component
|
353 |
+
changes,implementation,current=st.columns([0.3,0.6,0.3])
|
354 |
+
|
355 |
+
with implementation:
|
356 |
+
st.write("<br>"*5,unsafe_allow_html=True)
|
357 |
+
canvas_result = st_canvas(
|
358 |
+
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
|
359 |
+
stroke_width=stroke_width,
|
360 |
+
stroke_color=stroke_color,
|
361 |
+
background_color=bg_color,
|
362 |
+
background_image=gen_image if gen_image else Image.open("ALL_image_formation\image_gen.png"),
|
363 |
+
update_streamlit=True,
|
364 |
+
height=500,
|
365 |
+
width=500,
|
366 |
+
drawing_mode=drawing_mode,
|
367 |
+
point_display_radius=point_display_radius if drawing_mode == 'point' else 0,
|
368 |
+
key="canvas",
|
369 |
+
)
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
with column1:
|
376 |
+
# prompt=st.text_area("Please provide the prompt")
|
377 |
+
prompt=st.chat_input("Please provide the prompt")
|
378 |
+
|
379 |
+
negative_prompt="the black masked area"
|
380 |
+
|
381 |
+
# run=st.button("run_experiment")
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
if canvas_result.image_data is not None:
|
386 |
+
if prompt:
|
387 |
+
|
388 |
+
text_or_image=multimodel_output(prompt)
|
389 |
+
|
390 |
+
if text_or_image=="LABEL_0":
|
391 |
+
|
392 |
+
if "generated_image_prompt" not in dictionary:
|
393 |
+
dictionary['generated_image_prompt']=[]
|
394 |
+
if prompt not in dictionary['prompt_collection'] and prompt not in dictionary['generated_image_prompt']:
|
395 |
+
dictionary['prompt_collection']=[prompt]+dictionary['prompt_collection']
|
396 |
+
new_size=np.array(canvas_result.image_data).shape[:2]
|
397 |
+
new_size=(new_size[-1],new_size[0])
|
398 |
+
if bg_image!=dictionary["bg_image"] :
|
399 |
+
dictionary["bg_image"]=bg_image
|
400 |
+
if bg_image!=None:
|
401 |
+
imf=Image.open(bg_image).resize(new_size)
|
402 |
+
else:
|
403 |
+
with open("lotte_animation_saver/animation_4.json") as read:
|
404 |
+
url_json=json.load(read)
|
405 |
+
st_lottie(url_json)
|
406 |
+
imf=Image.open("ALL_image_formation\home_screen.jpg").resize(new_size)
|
407 |
+
else:
|
408 |
+
if len(dictionary['current_image'])!=0:
|
409 |
+
imf=dictionary['current_image'][0]
|
410 |
+
else:
|
411 |
+
with open("lotte_animation_saver/animation_4.json") as read:
|
412 |
+
url_json=json.load(read)
|
413 |
+
st_lottie(url_json)
|
414 |
+
imf=Image.open("ALL_image_formation\home_screen.jpg")
|
415 |
+
|
416 |
+
negative_image =d4_to_3d(np.array(canvas_result.image_data))
|
417 |
+
if np.sum(negative_image)==0:
|
418 |
+
negative_image=Image.fromarray(np.where(negative_image == False, True, negative_image))
|
419 |
+
else:
|
420 |
+
negative_image=Image.fromarray(negative_image)
|
421 |
+
|
422 |
+
modifiedValue=model_out_put(imf,negative_image,prompt,negative_prompt)
|
423 |
+
modifiedValue.save("ALL_image_formation/current_session_image.png")
|
424 |
+
dictionary['current_image']=[modifiedValue]+dictionary['current_image']
|
425 |
+
dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
|
426 |
+
st.rerun()
|
427 |
+
else:
|
428 |
+
st.write("nothing importent")
|
429 |
+
modifiedValue="@working"
|
430 |
+
dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
|
431 |
+
st.rerun()
|
432 |
+
# st.image(modifiedValue,width=300)
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
if canvas_result.json_data is not None:
|
437 |
+
objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
|
438 |
+
for col in objects.select_dtypes(include=['object']).columns:
|
439 |
+
objects[col] = objects[col].astype("str")
|
440 |
+
|
config.json
ADDED
File without changes
|
dataset_formation.ipynb
ADDED
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import json\n",
|
11 |
+
"import random"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 6,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [
|
19 |
+
{
|
20 |
+
"name": "stderr",
|
21 |
+
"output_type": "stream",
|
22 |
+
"text": [
|
23 |
+
"<>:1: SyntaxWarning: invalid escape sequence '\\c'\n",
|
24 |
+
"<>:3: SyntaxWarning: invalid escape sequence '\\d'\n",
|
25 |
+
"<>:1: SyntaxWarning: invalid escape sequence '\\c'\n",
|
26 |
+
"<>:3: SyntaxWarning: invalid escape sequence '\\d'\n",
|
27 |
+
"C:\\Users\\rajst\\AppData\\Local\\Temp\\ipykernel_11856\\1444736939.py:1: SyntaxWarning: invalid escape sequence '\\c'\n",
|
28 |
+
" image_data=pd.read_csv(\"data_set_formation\\custom_prompts_df.csv\")\n",
|
29 |
+
"C:\\Users\\rajst\\AppData\\Local\\Temp\\ipykernel_11856\\1444736939.py:3: SyntaxWarning: invalid escape sequence '\\d'\n",
|
30 |
+
" with open(\"data_set_formation\\data.json\") as read:\n"
|
31 |
+
]
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"source": [
|
35 |
+
"image_data=pd.read_csv(\"data_set_formation\\custom_prompts_df.csv\")\n",
|
36 |
+
"\n",
|
37 |
+
"with open(\"data_set_formation\\data.json\") as read:\n",
|
38 |
+
" text_data=json.load(read)\n",
|
39 |
+
"# prompt_data="
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": 7,
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [
|
47 |
+
{
|
48 |
+
"data": {
|
49 |
+
"text/html": [
|
50 |
+
"<div>\n",
|
51 |
+
"<style scoped>\n",
|
52 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
53 |
+
" vertical-align: middle;\n",
|
54 |
+
" }\n",
|
55 |
+
"\n",
|
56 |
+
" .dataframe tbody tr th {\n",
|
57 |
+
" vertical-align: top;\n",
|
58 |
+
" }\n",
|
59 |
+
"\n",
|
60 |
+
" .dataframe thead th {\n",
|
61 |
+
" text-align: right;\n",
|
62 |
+
" }\n",
|
63 |
+
"</style>\n",
|
64 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
65 |
+
" <thead>\n",
|
66 |
+
" <tr style=\"text-align: right;\">\n",
|
67 |
+
" <th></th>\n",
|
68 |
+
" <th>prompt</th>\n",
|
69 |
+
" <th>image_file</th>\n",
|
70 |
+
" </tr>\n",
|
71 |
+
" </thead>\n",
|
72 |
+
" <tbody>\n",
|
73 |
+
" <tr>\n",
|
74 |
+
" <th>0</th>\n",
|
75 |
+
" <td>painting of King Henry VIII carrying an umbrella</td>\n",
|
76 |
+
" <td>images/0/custom_0_0.png</td>\n",
|
77 |
+
" </tr>\n",
|
78 |
+
" <tr>\n",
|
79 |
+
" <th>1</th>\n",
|
80 |
+
" <td>Fox Mulder and a chinchilla walking down a roa...</td>\n",
|
81 |
+
" <td>images/0/custom_1_0.png</td>\n",
|
82 |
+
" </tr>\n",
|
83 |
+
" <tr>\n",
|
84 |
+
" <th>2</th>\n",
|
85 |
+
" <td>photo of a gas burner by a soft pretzel</td>\n",
|
86 |
+
" <td>images/0/custom_2_0.png</td>\n",
|
87 |
+
" </tr>\n",
|
88 |
+
" <tr>\n",
|
89 |
+
" <th>3</th>\n",
|
90 |
+
" <td>photo of Shyster standing street lights on at ...</td>\n",
|
91 |
+
" <td>images/0/custom_3_0.png</td>\n",
|
92 |
+
" </tr>\n",
|
93 |
+
" <tr>\n",
|
94 |
+
" <th>4</th>\n",
|
95 |
+
" <td>cute young man eating a plant over a fence in ...</td>\n",
|
96 |
+
" <td>images/0/custom_5_0.png</td>\n",
|
97 |
+
" </tr>\n",
|
98 |
+
" <tr>\n",
|
99 |
+
" <th>...</th>\n",
|
100 |
+
" <td>...</td>\n",
|
101 |
+
" <td>...</td>\n",
|
102 |
+
" </tr>\n",
|
103 |
+
" <tr>\n",
|
104 |
+
" <th>99995</th>\n",
|
105 |
+
" <td>photo of a natural kite at Westminster Abbey</td>\n",
|
106 |
+
" <td>images/102/custom_102419_0.png</td>\n",
|
107 |
+
" </tr>\n",
|
108 |
+
" <tr>\n",
|
109 |
+
" <th>99996</th>\n",
|
110 |
+
" <td>smooth rum with a clock in the style of a digi...</td>\n",
|
111 |
+
" <td>images/102/custom_102420_0.png</td>\n",
|
112 |
+
" </tr>\n",
|
113 |
+
" <tr>\n",
|
114 |
+
" <th>99997</th>\n",
|
115 |
+
" <td>a lovable elephant by the Gamla Stan, Stockholm</td>\n",
|
116 |
+
" <td>images/102/custom_102421_0.png</td>\n",
|
117 |
+
" </tr>\n",
|
118 |
+
" <tr>\n",
|
119 |
+
" <th>99998</th>\n",
|
120 |
+
" <td>photo of Courtney Love with a hot dog</td>\n",
|
121 |
+
" <td>images/102/custom_102422_0.png</td>\n",
|
122 |
+
" </tr>\n",
|
123 |
+
" <tr>\n",
|
124 |
+
" <th>99999</th>\n",
|
125 |
+
" <td>Maniac jumping on a skateboard near a fence</td>\n",
|
126 |
+
" <td>images/102/custom_102423_0.png</td>\n",
|
127 |
+
" </tr>\n",
|
128 |
+
" </tbody>\n",
|
129 |
+
"</table>\n",
|
130 |
+
"<p>100000 rows × 2 columns</p>\n",
|
131 |
+
"</div>"
|
132 |
+
],
|
133 |
+
"text/plain": [
|
134 |
+
" prompt \\\n",
|
135 |
+
"0 painting of King Henry VIII carrying an umbrella \n",
|
136 |
+
"1 Fox Mulder and a chinchilla walking down a roa... \n",
|
137 |
+
"2 photo of a gas burner by a soft pretzel \n",
|
138 |
+
"3 photo of Shyster standing street lights on at ... \n",
|
139 |
+
"4 cute young man eating a plant over a fence in ... \n",
|
140 |
+
"... ... \n",
|
141 |
+
"99995 photo of a natural kite at Westminster Abbey \n",
|
142 |
+
"99996 smooth rum with a clock in the style of a digi... \n",
|
143 |
+
"99997 a lovable elephant by the Gamla Stan, Stockholm \n",
|
144 |
+
"99998 photo of Courtney Love with a hot dog \n",
|
145 |
+
"99999 Maniac jumping on a skateboard near a fence \n",
|
146 |
+
"\n",
|
147 |
+
" image_file \n",
|
148 |
+
"0 images/0/custom_0_0.png \n",
|
149 |
+
"1 images/0/custom_1_0.png \n",
|
150 |
+
"2 images/0/custom_2_0.png \n",
|
151 |
+
"3 images/0/custom_3_0.png \n",
|
152 |
+
"4 images/0/custom_5_0.png \n",
|
153 |
+
"... ... \n",
|
154 |
+
"99995 images/102/custom_102419_0.png \n",
|
155 |
+
"99996 images/102/custom_102420_0.png \n",
|
156 |
+
"99997 images/102/custom_102421_0.png \n",
|
157 |
+
"99998 images/102/custom_102422_0.png \n",
|
158 |
+
"99999 images/102/custom_102423_0.png \n",
|
159 |
+
"\n",
|
160 |
+
"[100000 rows x 2 columns]"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
"execution_count": 7,
|
164 |
+
"metadata": {},
|
165 |
+
"output_type": "execute_result"
|
166 |
+
}
|
167 |
+
],
|
168 |
+
"source": [
|
169 |
+
"image_data"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": 8,
|
175 |
+
"metadata": {},
|
176 |
+
"outputs": [],
|
177 |
+
"source": [
|
178 |
+
"data_dict={\"prompt\":[],\"label\":[]}"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"execution_count": 9,
|
184 |
+
"metadata": {},
|
185 |
+
"outputs": [],
|
186 |
+
"source": [
|
187 |
+
"queries = [\n",
|
188 |
+
" # General Descriptions\n",
|
189 |
+
" \"Generate a beautiful sunset over the ocean.\",\n",
|
190 |
+
" \"Create a futuristic cityscape at night.\",\n",
|
191 |
+
" \"Show a cozy cabin in the middle of a snowy forest.\",\n",
|
192 |
+
" \"Draw a tropical beach with palm trees and clear blue water.\",\n",
|
193 |
+
" \"Design a medieval castle on a hilltop.\",\n",
|
194 |
+
" \n",
|
195 |
+
" # Character-Focused Queries\n",
|
196 |
+
" \"Generate a young woman with long red hair in a fantasy setting.\",\n",
|
197 |
+
" \"Create a warrior in futuristic armor holding a glowing sword.\",\n",
|
198 |
+
" \"Draw a friendly robot helping people in a park.\",\n",
|
199 |
+
" \"Design a wise old wizard with a long beard and staff.\",\n",
|
200 |
+
" \"Illustrate a child playing with a puppy in a garden.\",\n",
|
201 |
+
" \n",
|
202 |
+
" # Animal and Nature Queries\n",
|
203 |
+
" \"Show a majestic tiger in a dense jungle.\",\n",
|
204 |
+
" \"Create a flock of birds flying over a mountain range.\",\n",
|
205 |
+
" \"Draw a koi fish pond with colorful fish.\",\n",
|
206 |
+
" \"Generate a close-up of a butterfly on a flower.\",\n",
|
207 |
+
" \"Illustrate a desert landscape with cacti and a setting sun.\",\n",
|
208 |
+
" \n",
|
209 |
+
" # Architectural and Object Queries\n",
|
210 |
+
" \"Design a futuristic spaceship hovering above Earth.\",\n",
|
211 |
+
" \"Create a vintage car driving on a country road.\",\n",
|
212 |
+
" \"Draw a small café on a busy European street.\",\n",
|
213 |
+
" \"Generate a treehouse in the middle of a forest.\",\n",
|
214 |
+
" \"Show a steampunk-style clock tower.\",\n",
|
215 |
+
" \n",
|
216 |
+
" # Abstract or Conceptual Queries\n",
|
217 |
+
" \"Create an image representing the concept of time.\",\n",
|
218 |
+
" \"Design a surreal landscape with floating islands.\",\n",
|
219 |
+
" \"Generate an artwork of colors blending like a rainbow.\",\n",
|
220 |
+
" \"Illustrate the feeling of calmness in visual form.\",\n",
|
221 |
+
" \"Show a dreamlike city made of crystal.\",\n",
|
222 |
+
" \n",
|
223 |
+
" # Cultural or Historical Themes\n",
|
224 |
+
" \"Illustrate an ancient Egyptian pyramid under the stars.\",\n",
|
225 |
+
" \"Show a samurai in traditional armor standing in a bamboo forest.\",\n",
|
226 |
+
" \"Draw a Viking ship sailing through a storm.\",\n",
|
227 |
+
" \"Create an Indian temple with intricate carvings.\",\n",
|
228 |
+
" \"Generate a Renaissance-style painting of a feast.\",\n",
|
229 |
+
" \n",
|
230 |
+
" # Event or Scene Queries\n",
|
231 |
+
" \"Show a birthday party with balloons and a cake.\",\n",
|
232 |
+
" \"Create an image of people camping under the stars.\",\n",
|
233 |
+
" \"Draw a bustling market in a small village.\",\n",
|
234 |
+
" \"Illustrate a concert with a crowd and colorful lights.\",\n",
|
235 |
+
" \"Generate an image of a wedding ceremony by the beach.\",\n",
|
236 |
+
" \n",
|
237 |
+
" # Seasonal and Holiday Themes\n",
|
238 |
+
" \"Show a Christmas scene with a decorated tree and snow.\",\n",
|
239 |
+
" \"Generate a spooky Halloween setting with pumpkins and ghosts.\",\n",
|
240 |
+
" \"Create a spring meadow full of flowers and butterflies.\",\n",
|
241 |
+
" \"Draw an autumn forest with falling leaves.\",\n",
|
242 |
+
" \"Illustrate a New Year celebration with fireworks.\"\n",
|
243 |
+
"]"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "code",
|
248 |
+
"execution_count": 10,
|
249 |
+
"metadata": {},
|
250 |
+
"outputs": [],
|
251 |
+
"source": [
|
252 |
+
"for i in queries:\n",
|
253 |
+
" data_dict['prompt'].append(i.lower())\n",
|
254 |
+
" data_dict['label'].append(\"image\")"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "code",
|
259 |
+
"execution_count": 11,
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [],
|
262 |
+
"source": [
|
263 |
+
"counter=0\n",
|
264 |
+
"detail_list=[\"painting\",\"image\",\"photo\",\"frame\",\"picture\",\"potrait\",\"pic\",\"snapshot\"]\n",
|
265 |
+
"for i in image_data['prompt']:\n",
|
266 |
+
" if any([paint_key in i for paint_key in [\"painting\",\"image\",\"photo\",\"frame\",\"picture\",\"potrait\",\"pic\",\"snapshot\"]]):\n",
|
267 |
+
" data_dict['prompt'].append(i.lower().replace(random.choice(detail_list),\"image\"))\n",
|
268 |
+
" data_dict['label'].append(\"image\")\n",
|
269 |
+
" counter+=1\n",
|
270 |
+
" if counter==20000:\n",
|
271 |
+
" break\n",
|
272 |
+
"counter=0\n",
|
273 |
+
"for j in text_data[:20000]:\n",
|
274 |
+
" data_dict['prompt'].append(j['note'].lower())\n",
|
275 |
+
" data_dict['label'].append(\"text\")\n",
|
276 |
+
" counter+=1\n",
|
277 |
+
" if counter==15000:\n",
|
278 |
+
" break"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": 12,
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [],
|
286 |
+
"source": [
|
287 |
+
"counter=0\n",
|
288 |
+
"for z in text_data[15000:]:\n",
|
289 |
+
" if any([paint_key in z['note'] for paint_key in [\"painting\",\"image\",\"photo\",\"frame\",\"picture\",\"potrait\",\"pic\",\"snapshot\"]]):\n",
|
290 |
+
" data_dict['prompt'].append(z['note'].lower())\n",
|
291 |
+
" data_dict['label'].append(\"text\")\n",
|
292 |
+
" counter+=1\n",
|
293 |
+
" if counter==5000:\n",
|
294 |
+
" break"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "code",
|
299 |
+
"execution_count": null,
|
300 |
+
"metadata": {},
|
301 |
+
"outputs": [],
|
302 |
+
"source": []
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "code",
|
306 |
+
"execution_count": 13,
|
307 |
+
"metadata": {},
|
308 |
+
"outputs": [
|
309 |
+
{
|
310 |
+
"data": {
|
311 |
+
"text/html": [
|
312 |
+
"<div>\n",
|
313 |
+
"<style scoped>\n",
|
314 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
315 |
+
" vertical-align: middle;\n",
|
316 |
+
" }\n",
|
317 |
+
"\n",
|
318 |
+
" .dataframe tbody tr th {\n",
|
319 |
+
" vertical-align: top;\n",
|
320 |
+
" }\n",
|
321 |
+
"\n",
|
322 |
+
" .dataframe thead th {\n",
|
323 |
+
" text-align: right;\n",
|
324 |
+
" }\n",
|
325 |
+
"</style>\n",
|
326 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
327 |
+
" <thead>\n",
|
328 |
+
" <tr style=\"text-align: right;\">\n",
|
329 |
+
" <th></th>\n",
|
330 |
+
" <th>prompt</th>\n",
|
331 |
+
" <th>label</th>\n",
|
332 |
+
" </tr>\n",
|
333 |
+
" </thead>\n",
|
334 |
+
" <tbody>\n",
|
335 |
+
" <tr>\n",
|
336 |
+
" <th>0</th>\n",
|
337 |
+
" <td>generate a beautiful sunset over the ocean.</td>\n",
|
338 |
+
" <td>image</td>\n",
|
339 |
+
" </tr>\n",
|
340 |
+
" <tr>\n",
|
341 |
+
" <th>1</th>\n",
|
342 |
+
" <td>create a futuristic cityscape at night.</td>\n",
|
343 |
+
" <td>image</td>\n",
|
344 |
+
" </tr>\n",
|
345 |
+
" <tr>\n",
|
346 |
+
" <th>2</th>\n",
|
347 |
+
" <td>show a cozy cabin in the middle of a snowy for...</td>\n",
|
348 |
+
" <td>image</td>\n",
|
349 |
+
" </tr>\n",
|
350 |
+
" <tr>\n",
|
351 |
+
" <th>3</th>\n",
|
352 |
+
" <td>draw a tropical beach with palm trees and clea...</td>\n",
|
353 |
+
" <td>image</td>\n",
|
354 |
+
" </tr>\n",
|
355 |
+
" <tr>\n",
|
356 |
+
" <th>4</th>\n",
|
357 |
+
" <td>design a medieval castle on a hilltop.</td>\n",
|
358 |
+
" <td>image</td>\n",
|
359 |
+
" </tr>\n",
|
360 |
+
" <tr>\n",
|
361 |
+
" <th>...</th>\n",
|
362 |
+
" <td>...</td>\n",
|
363 |
+
" <td>...</td>\n",
|
364 |
+
" </tr>\n",
|
365 |
+
" <tr>\n",
|
366 |
+
" <th>40035</th>\n",
|
367 |
+
" <td>i was watching a documentary and it spoke of s...</td>\n",
|
368 |
+
" <td>text</td>\n",
|
369 |
+
" </tr>\n",
|
370 |
+
" <tr>\n",
|
371 |
+
" <th>40036</th>\n",
|
372 |
+
" <td>should i buy a dslr or a new phone for photogr...</td>\n",
|
373 |
+
" <td>text</td>\n",
|
374 |
+
" </tr>\n",
|
375 |
+
" <tr>\n",
|
376 |
+
" <th>40037</th>\n",
|
377 |
+
" <td>okay, i see. so it depends on how serious i am...</td>\n",
|
378 |
+
" <td>text</td>\n",
|
379 |
+
" </tr>\n",
|
380 |
+
" <tr>\n",
|
381 |
+
" <th>40038</th>\n",
|
382 |
+
" <td>it is just to take photos of my family</td>\n",
|
383 |
+
" <td>text</td>\n",
|
384 |
+
" </tr>\n",
|
385 |
+
" <tr>\n",
|
386 |
+
" <th>40039</th>\n",
|
387 |
+
" <td>is there any topical treatment i can apply to ...</td>\n",
|
388 |
+
" <td>text</td>\n",
|
389 |
+
" </tr>\n",
|
390 |
+
" </tbody>\n",
|
391 |
+
"</table>\n",
|
392 |
+
"<p>40040 rows × 2 columns</p>\n",
|
393 |
+
"</div>"
|
394 |
+
],
|
395 |
+
"text/plain": [
|
396 |
+
" prompt label\n",
|
397 |
+
"0 generate a beautiful sunset over the ocean. image\n",
|
398 |
+
"1 create a futuristic cityscape at night. image\n",
|
399 |
+
"2 show a cozy cabin in the middle of a snowy for... image\n",
|
400 |
+
"3 draw a tropical beach with palm trees and clea... image\n",
|
401 |
+
"4 design a medieval castle on a hilltop. image\n",
|
402 |
+
"... ... ...\n",
|
403 |
+
"40035 i was watching a documentary and it spoke of s... text\n",
|
404 |
+
"40036 should i buy a dslr or a new phone for photogr... text\n",
|
405 |
+
"40037 okay, i see. so it depends on how serious i am... text\n",
|
406 |
+
"40038 it is just to take photos of my family text\n",
|
407 |
+
"40039 is there any topical treatment i can apply to ... text\n",
|
408 |
+
"\n",
|
409 |
+
"[40040 rows x 2 columns]"
|
410 |
+
]
|
411 |
+
},
|
412 |
+
"execution_count": 13,
|
413 |
+
"metadata": {},
|
414 |
+
"output_type": "execute_result"
|
415 |
+
}
|
416 |
+
],
|
417 |
+
"source": [
|
418 |
+
"pd.DataFrame(data_dict)"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"execution_count": 14,
|
424 |
+
"metadata": {},
|
425 |
+
"outputs": [],
|
426 |
+
"source": [
|
427 |
+
"import os\n",
|
428 |
+
"folder_path = 'formatted_data/'\n",
|
429 |
+
"\n",
|
430 |
+
"# Get the list of all files in the folder\n",
|
431 |
+
"file_names = os.listdir(folder_path)\n",
|
432 |
+
"max_file_name=max([int(i.split(\"_\")[-1][:-4]) for i in file_names])"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "markdown",
|
437 |
+
"metadata": {},
|
438 |
+
"source": [
|
439 |
+
"# Confussing prompts"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"cell_type": "code",
|
444 |
+
"execution_count": 15,
|
445 |
+
"metadata": {},
|
446 |
+
"outputs": [],
|
447 |
+
"source": [
|
448 |
+
"# from langchain_community.llms import Ollama\n",
|
449 |
+
"# llm = Ollama(model=\"llava:34b \",num_ctx=10000)\n",
|
450 |
+
"# enhancement=\"I need to train a model to distinguish between text and images. Please create a list of challenging prompts where the model needs to decide whether to generate text or identify an image.\"\n",
|
451 |
+
"# prompt = enhancement\n",
|
452 |
+
"# # result = llm.invoke(prompt)\n",
|
453 |
+
"# value=llm.invoke(prompt)"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"cell_type": "code",
|
458 |
+
"execution_count": 16,
|
459 |
+
"metadata": {},
|
460 |
+
"outputs": [],
|
461 |
+
"source": [
|
462 |
+
"# print(str(value))"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "code",
|
467 |
+
"execution_count": 17,
|
468 |
+
"metadata": {},
|
469 |
+
"outputs": [],
|
470 |
+
"source": [
|
471 |
+
"pd.DataFrame(data_dict).to_csv(\"formatted_data/data_\"+str(max_file_name+1)+\".csv\",index=False)"
|
472 |
+
]
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "code",
|
476 |
+
"execution_count": null,
|
477 |
+
"metadata": {},
|
478 |
+
"outputs": [],
|
479 |
+
"source": []
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"cell_type": "code",
|
483 |
+
"execution_count": null,
|
484 |
+
"metadata": {},
|
485 |
+
"outputs": [],
|
486 |
+
"source": []
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"cell_type": "code",
|
490 |
+
"execution_count": null,
|
491 |
+
"metadata": {},
|
492 |
+
"outputs": [],
|
493 |
+
"source": []
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"cell_type": "code",
|
497 |
+
"execution_count": null,
|
498 |
+
"metadata": {},
|
499 |
+
"outputs": [],
|
500 |
+
"source": []
|
501 |
+
}
|
502 |
+
],
|
503 |
+
"metadata": {
|
504 |
+
"kernelspec": {
|
505 |
+
"display_name": "env",
|
506 |
+
"language": "python",
|
507 |
+
"name": "python3"
|
508 |
+
},
|
509 |
+
"language_info": {
|
510 |
+
"codemirror_mode": {
|
511 |
+
"name": "ipython",
|
512 |
+
"version": 3
|
513 |
+
},
|
514 |
+
"file_extension": ".py",
|
515 |
+
"mimetype": "text/x-python",
|
516 |
+
"name": "python",
|
517 |
+
"nbconvert_exporter": "python",
|
518 |
+
"pygments_lexer": "ipython3",
|
519 |
+
"version": "3.12.4"
|
520 |
+
}
|
521 |
+
},
|
522 |
+
"nbformat": 4,
|
523 |
+
"nbformat_minor": 2
|
524 |
+
}
|
image_experimentation.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
new intent_model.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|