Spaces:
Running
Running
import cv2 | |
import torch | |
import onnx | |
import onnxruntime | |
import numpy as np | |
from tqdm import tqdm | |
# https://github.com/yahoo/open_nsfw | |
class NSFWChecker: | |
def __init__(self, model_path=None, providers=["CPUExecutionProvider"]): | |
model = onnx.load(model_path) | |
self.input_name = model.graph.input[0].name | |
session_options = onnxruntime.SessionOptions() | |
self.session = onnxruntime.InferenceSession(model_path, sess_options=session_options, providers=providers) | |
def is_nsfw(self, img_paths, threshold = 0.85): | |
skip_step = 1 | |
total_len = len(img_paths) | |
if total_len < 100: skip_step = 1 | |
if total_len > 100 and total_len < 500: skip_step = 10 | |
if total_len > 500 and total_len < 1000: skip_step = 20 | |
if total_len > 1000 and total_len < 10000: skip_step = 50 | |
if total_len > 10000: skip_step = 100 | |
for idx in tqdm(range(0, total_len, skip_step), total=int(total_len // skip_step), desc="Checking for NSFW contents"): | |
img = cv2.imread(img_paths[idx]) | |
img = cv2.resize(img, (224,224)).astype('float32') | |
img -= np.array([104, 117, 123], dtype=np.float32) | |
img = np.expand_dims(img, axis=0) | |
score = self.session.run(None, {self.input_name:img})[0][0][1] | |
if score > threshold: | |
print(f"Detected nsfw score:{score}") | |
return True | |
return False | |