ChatGPT / app.py
军舰
Add application file
e0c4e40
raw
history blame
3.91 kB
import os
import openai
import tiktoken
openai.api_key = os.getenv("OPENAI_API_KEY")
class Conversation:
def __init__(self, prompt, model="gpt-3.5-turbo", temperature=0.8, max_tokens=250):
self.prompt = prompt
self.model = model
self.temperature = temperature
self.max_tokens = max_tokens
self._init_messages()
def _init_messages(self):
self.messages = [{"role": "system", "content": self.prompt}]
def reset(self):
self._init_messages()
def ask(self, question, pprint=False):
self.messages.append({"role": "user", "content": question})
if self.num_tokens(self.messages, self.model) >= self.max_tokens:
if len(self.messages) > 3:
self.messages = self.messages[:1] + self.messages[3:] # remove the first user message
else:
return "Error: max tokens exceeded."
try:
response = openai.ChatCompletion.create(
model=self.model,
messages=self.messages
)
except Exception as e:
return e
if pprint:
print(f"tiktoken: {self.num_tokens(self.messages, self.model)}\ntokens: {response['usage']}")
assistant_message = response["choices"][0]["message"]["content"]
self.messages.append({"role": "assistant", "content": assistant_message})
return assistant_message
def num_tokens(self, messages, model):
"""Returns the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
print("Warning: gpt-3.5-turbo may change over time. Returning num tokens assuming gpt-3.5-turbo-0301.")
return self.num_tokens(messages, model="gpt-3.5-turbo-0301")
elif model == "gpt-4":
print("Warning: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.")
return self.num_tokens(messages, model="gpt-4-0314")
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4-0314":
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
import gradio as gr
system_prompt_foodie = "您是一名美食家,帮助别人了解美食的信息,回答要简洁有效并控制在100字左右。"
conv = Conversation(system_prompt_foodie, max_tokens=1024)
with gr.Blocks(title="ChatGPT 助手") as demo:
chatbot = gr.Chatbot(elem_id="chatbot")#.style(height=700)
msg = gr.Textbox(show_label=False).style(container=False)
clear = gr.Button("Clear")
def ask(message, chat_history):
bot_message = conv.ask(message)
chat_history.append((message, bot_message))
return "", chat_history
msg.submit(ask, [msg, chatbot], [msg, chatbot])
clear.click(lambda: conv.reset(), None, chatbot, queue=False)
demo.launch()