Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -196,11 +196,12 @@ def train_function_no_sweeps(base_model_path): #, train_dataset, test_dataset)
|
|
196 |
train_dataset = accelerator.prepare(train_dataset)
|
197 |
test_dataset = accelerator.prepare(test_dataset)
|
198 |
|
|
|
199 |
timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
|
200 |
|
201 |
# Training setup
|
202 |
training_args = TrainingArguments(
|
203 |
-
output_dir=f"
|
204 |
learning_rate=config["lr"],
|
205 |
lr_scheduler_type=config["lr_scheduler_type"],
|
206 |
gradient_accumulation_steps=1,
|
@@ -241,9 +242,9 @@ def train_function_no_sweeps(base_model_path): #, train_dataset, test_dataset)
|
|
241 |
|
242 |
# Train and Save Model
|
243 |
trainer.train()
|
244 |
-
save_path = os.path.join("lora_binding_sites", f"best_model_esm2_t12_35M_lora_{timestamp}")
|
245 |
-
trainer.save_model(save_path)
|
246 |
-
tokenizer.save_pretrained(save_path)
|
247 |
|
248 |
return save_path
|
249 |
|
|
|
196 |
train_dataset = accelerator.prepare(train_dataset)
|
197 |
test_dataset = accelerator.prepare(test_dataset)
|
198 |
|
199 |
+
model_name_base = base_model_path.split("/")[1]
|
200 |
timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
|
201 |
|
202 |
# Training setup
|
203 |
training_args = TrainingArguments(
|
204 |
+
output_dir=f"{model_name_base}-lora-binding-sites_{timestamp}",
|
205 |
learning_rate=config["lr"],
|
206 |
lr_scheduler_type=config["lr_scheduler_type"],
|
207 |
gradient_accumulation_steps=1,
|
|
|
242 |
|
243 |
# Train and Save Model
|
244 |
trainer.train()
|
245 |
+
#save_path = os.path.join("lora_binding_sites", f"best_model_esm2_t12_35M_lora_{timestamp}")
|
246 |
+
#trainer.save_model(save_path)
|
247 |
+
#tokenizer.save_pretrained(save_path)
|
248 |
|
249 |
return save_path
|
250 |
|