MapLocNetGradio / demo.py
wangerniu
maplocnet
629144d
import matplotlib.pyplot as plt
# from demo import Demo, read_input_image,read_input_image_test
from evaluation.viz import plot_example_single
from dataset.torch import unbatch_to_device
import matplotlib.pyplot as plt
from typing import Optional, Tuple
import cv2
import torch
import numpy as np
import time
from logger import logger
from evaluation.run import resolve_checkpoint_path, pretrained_models
from models.maplocnet import MapLocNet
from models.voting import fuse_gps, argmax_xyr
# from data.image import resize_image, pad_image, rectify_image
from osm.raster import Canvas
from utils.wrappers import Camera
from utils.io import read_image
from utils.geo import BoundaryBox, Projection
from utils.exif import EXIF
import requests
from pathlib import Path
from utils.exif import EXIF
from dataset.image import resize_image, pad_image, rectify_image
# from maploc.demo import Demo, read_input_image
from dataset import UavMapDatasetModule
import torchvision.transforms as tvf
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
from PIL import Image
# import pyproj
# Query OpenStreetMap for this area
from osm.tiling import TileManager
from utils.viz_localization import (
likelihood_overlay,
plot_dense_rotations,
add_circle_inset,
)
# Show the inputs to the model: image and raster map
from osm.viz import Colormap, plot_nodes
from utils.viz_2d import plot_images
from utils.viz_2d import features_to_RGB
import random
from geopy.distance import geodesic
def vis_image_feature(F):
def normalize(x):
return x / np.linalg.norm(x, axis=-1, keepdims=True)
# F=neural_map.numpy()
F = F[:, 0:180, 0:180]
flatten = []
c, h, w = F.shape
print(F.shape)
F = np.rollaxis(F, 0, 3)
F_flat = F.reshape(-1, c)
flatten.append(F_flat)
flatten = normalize(flatten)[0]
flatten = np.nan_to_num(flatten, nan=0)
pca = PCA(n_components=3)
print(flatten.shape)
flatten = pca.fit_transform(flatten)
flatten = (normalize(flatten) + 1) / 2
# h, w = F.shape[-2:]
F_rgb, flatten = np.split(flatten, [h * w], axis=0)
F_rgb = F_rgb.reshape((h, w, 3))
return F_rgb
def distance(lat1, lon1, lat2, lon2):
point1 = (lat1, lon1)
point2 = (lat2, lon2)
distance_km = geodesic(point1, point2).meters
return distance_km
# # 示例
# lat1, lon1 = 39.9, 116.4 # 北京的经纬度
# lat2, lon2 = 31.2, 121.5 # 上海的经纬度
# distance_km = distance(lat1, lon1, lat2, lon2)
# print(distance_km)
def show_result(map_vis_image, pre_uv, pre_yaw):
# 创建一个和原始图片大小相同的灰色蒙版图像
gray_mask = np.zeros_like(map_vis_image)
gray_mask.fill(128) # 填充灰色
# 将灰色蒙版图像与原始图像进行融合
image = cv2.addWeighted(map_vis_image, 1, gray_mask, 0, 0)
# 绘制真实值
# 绘制预测值
u, v = pre_uv
x1, y1 = int(u), int(v) # 替换为实际的起点坐标
angle = pre_yaw - 90 # 替换为实际的箭头角度
# 计算箭头的终点坐标
length = 20
x2 = int(x1 + length * np.cos(np.radians(angle)))
y2 = int(y1 + length * np.sin(np.radians(angle)))
# 在图像上画出箭头
cv2.arrowedLine(image, (x1, y1), (x2, y2), (0, 0, 0), 2, 5, 0, 0.3)
# cv2.circle(image, (x1, y1), radius=2, color=(255, 0, 255), thickness=-1)
return image
def xyz_to_latlon(x, y, z):
# 定义WGS84投影
wgs84 = pyproj.CRS('EPSG:4326')
# 定义XYZ投影
xyz = pyproj.CRS(f'+proj=geocent +datum=WGS84 +units=m +no_defs')
# 创建坐标转换器
transformer = pyproj.Transformer.from_crs(xyz, wgs84)
# 转换坐标
lon, lat, _ = transformer.transform(x, y, z)
return lat, lon
class Demo:
def __init__(
self,
experiment_or_path: Optional[str] = "OrienterNet_MGL",
device=None,
**kwargs
):
if experiment_or_path in pretrained_models:
experiment_or_path, _ = pretrained_models[experiment_or_path]
path = resolve_checkpoint_path(experiment_or_path)
ckpt = torch.load(path, map_location=(lambda storage, loc: storage))
config = ckpt["hyper_parameters"]
config.model.update(kwargs)
config.model.image_encoder.backbone.pretrained = False
model = MapLocNet(config.model).eval()
state = {k[len("model."):]: v for k, v in ckpt["state_dict"].items()}
model.load_state_dict(state, strict=True)
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
self.model = model
self.config = config
self.device = device
def prepare_data(
self,
image: np.ndarray,
camera: Camera,
canvas: Canvas,
roll_pitch: Optional[Tuple[float]] = None,
):
image = torch.from_numpy(image).permute(2, 0, 1).float().div_(255)
return {
'map': torch.from_numpy(canvas.raster).long(),
'image': image,
# 'roll_pitch_yaw':torch.tensor((0, 0, float(yaw))).float().unsqueeze(0),
# 'pixels_per_meter':torch.tensor(float(pixel_per_meter)).float().unsqueeze(0),
# "uv":torch.tensor([float(u), float(v)]).float().unsqueeze(0),
}
# return dict(
# image=image,
# map=torch.from_numpy(canvas.raster).long(),
# camera=camera.float(),
# valid=valid,
# )
def localize(self, image: np.ndarray, camera: Camera, canvas: Canvas, **kwargs):
data = self.prepare_data(image, camera, canvas, **kwargs)
data_ = {k: v.to(self.device)[None] for k, v in data.items()}
# data_np = {k: v.cpu().numpy()[None] for k, v in data.items()}
# logger.info(data_)
# np.save(data_np, 'data_.npy')
start = time.time()
with torch.no_grad():
pred = self.model(data_)
end = time.time()
xy_gps = canvas.bbox.center
uv_gps = torch.from_numpy(canvas.to_uv(xy_gps))
lp_xyr = pred["log_probs"].squeeze(0)
# tile_size = canvas.bbox.size.min() / 2
# sigma = tile_size - 20 # 20 meters margin
# lp_xyr = fuse_gps(
# lp_xyr,
# uv_gps.to(lp_xyr),
# self.config.model.pixel_per_meter,
# sigma=sigma,
# )
xyr = argmax_xyr(lp_xyr).cpu()
prob = lp_xyr.exp().cpu()
neural_map = pred["map"]["map_features"][0].squeeze(0).cpu()
print('total time:', start - end)
return xyr[:2], xyr[2], prob, neural_map, data["image"], data_, pred
def load_test_data(
root: Path,
city: str,
index: int,
):
uav_image_path = root / city / 'uav'
map_path = root / city / 'map'
map_vis = root / city / 'map_vis'
info_path = root / city / 'info.csv'
osm_path = root / city / '{}.osm'.format(city)
info = np.loadtxt(str(info_path), dtype=str, delimiter=",", skiprows=1)
id, uav_name, map_name, \
uav_long, uav_lat, \
map_long, map_lat, \
tile_size_meters, pixel_per_meter, \
u, v, yaw, dis = info[index]
print(info[index])
uav_image_rgb = cv2.imread(str(uav_image_path / uav_name))
uav_image_rgb = cv2.cvtColor(uav_image_rgb, cv2.COLOR_BGR2RGB)
# w,h,c=uav_image_rgb.shape
# # 指定裁剪区域的坐标
# x = w//2 # 起始横坐标
# y = h//2 # 起始纵坐标
# w = 150 # 宽度
# h = 150 # 高度
# # 裁剪图像
# uav_image_rgb = uav_image_rgb[y-h:y+h, x-w:x+w]
map_vis_image = cv2.imread(str(map_vis / uav_name))
map_vis_image = cv2.cvtColor(map_vis_image, cv2.COLOR_BGR2RGB)
map = np.load(str(map_path / map_name))
tfs = []
tfs.append(tvf.ToTensor())
tfs.append(tvf.Resize(256))
val_tfs = tvf.Compose(tfs)
uav_image = val_tfs(uav_image_rgb)
# print(id, uav_name, map_name, \
# uav_long, uav_lat, \
# map_long, map_lat, \
# tile_size_meters, pixel_per_meter, \
# u, v, yaw,dis)
uav_path = str(uav_image_path / uav_name)
return {
'map': torch.from_numpy(np.ascontiguousarray(map)).long().unsqueeze(0),
'image': torch.tensor(uav_image).unsqueeze(0),
'roll_pitch_yaw': torch.tensor((0, 0, float(yaw))).float().unsqueeze(0),
'pixels_per_meter': torch.tensor(float(pixel_per_meter)).float().unsqueeze(0),
"uv": torch.tensor([float(u), float(v)]).float().unsqueeze(0),
}, uav_image_rgb, map_vis_image, uav_path, [float(map_lat), float(map_long)]
def crop_image(image, width, height):
# 计算剪裁区域的起始点坐标
x = int((image.shape[1] - width) / 2)
y = int((image.shape[0] - height) / 2)
# 剪裁图像
cropped_image = image[y:y + height, x:x + width]
return cropped_image
def crop_square(image):
# 获取图像的宽度和高度
height, width = image.shape[:2]
# 确定最小边的长度
min_length = min(height, width)
# 计算剪裁区域的坐标
top = (height - min_length) // 2
bottom = top + min_length
left = (width - min_length) // 2
right = left + min_length
# 剪裁图像为正方形
cropped_image = image[top:bottom, left:right]
return cropped_image
def read_input_image_test(
image,
prior_latlon,
tile_size_meters,
):
# image = read_image(image_path)
# # 剪裁图像
# # 指定剪裁的宽度和高度
# width = 1080*2
# height =1080*2
# image = crop_square(image)
# # print("input image:",image.shape)
# image = crop_image(image, width, height)
# # print("crop_image:",image.shape)
image = cv2.resize(image,(256,256))
roll_pitch = None
latlon = None
if prior_latlon is not None:
latlon = prior_latlon
logger.info("Using prior latlon %s.", prior_latlon)
if latlon is None:
with open(image_path, "rb") as fid:
exif = EXIF(fid, lambda: image.shape[:2])
geo = exif.extract_geo()
if geo:
alt = geo.get("altitude", 0) # read if available
latlon = (geo["latitude"], geo["longitude"], alt)
logger.info("Using prior location from EXIF.")
# print(latlon)
else:
logger.info("Could not find any prior location in the image EXIF metadata.")
latlon = np.array(latlon)
proj = Projection(*latlon)
center = proj.project(latlon)
bbox = BoundaryBox(center, center) + float(tile_size_meters)
camera=None
image=cv2.resize(image,(256,256))
return image, camera, roll_pitch, proj, bbox, latlon
if __name__ == '__main__':
experiment_or_path = "weight/last-step-checkpointing.ckpt"
# experiment_or_path="experiments/maplocanet_0906_diffhight/last-step-checkpointing.ckpt"
image_path='images/00000.jpg'
prior_latlon=(37.75704325989902,-122.435941445631)
tile_size_meters=128
demo = Demo(experiment_or_path=experiment_or_path, num_rotations=128, device='cpu')
image, camera, gravity, proj, bbox, true_prior_latlon = read_input_image_test(
image_path,
prior_latlon=prior_latlon,
tile_size_meters=tile_size_meters, # try 64, 256, etc.
)
tiler = TileManager.from_bbox(projection=proj, bbox=bbox + 10,ppm=1, tile_size=tile_size_meters)
# tiler = TileManager.from_bbox(projection=proj, bbox=bbox + 10,ppm=1,path=root/city/'{}.osm'.format(city), tile_size=1)
canvas = tiler.query(bbox)
uv, yaw, prob, neural_map, image_rectified, data_, pred = demo.localize(
image, camera, canvas)
prior_latlon_pred = proj.unproject(canvas.to_xy(uv))
pass