|
|
|
|
|
import math |
|
from typing import Optional |
|
|
|
import torch |
|
|
|
|
|
def checkpointed(cls, do=True): |
|
"""Adapted from the DISK implementation of Michał Tyszkiewicz.""" |
|
assert issubclass(cls, torch.nn.Module) |
|
|
|
class Checkpointed(cls): |
|
def forward(self, *args, **kwargs): |
|
super_fwd = super(Checkpointed, self).forward |
|
if any((torch.is_tensor(a) and a.requires_grad) for a in args): |
|
return torch.utils.checkpoint.checkpoint(super_fwd, *args, **kwargs) |
|
else: |
|
return super_fwd(*args, **kwargs) |
|
|
|
return Checkpointed if do else cls |
|
|
|
|
|
class GlobalPooling(torch.nn.Module): |
|
def __init__(self, kind): |
|
super().__init__() |
|
if kind == "mean": |
|
self.fn = torch.nn.Sequential( |
|
torch.nn.Flatten(2), torch.nn.AdaptiveAvgPool1d(1), torch.nn.Flatten() |
|
) |
|
elif kind == "max": |
|
self.fn = torch.nn.Sequential( |
|
torch.nn.Flatten(2), torch.nn.AdaptiveMaxPool1d(1), torch.nn.Flatten() |
|
) |
|
else: |
|
raise ValueError(f"Unknown pooling type {kind}.") |
|
|
|
def forward(self, x): |
|
return self.fn(x) |
|
|
|
|
|
@torch.jit.script |
|
def make_grid( |
|
w: float, |
|
h: float, |
|
step_x: float = 1.0, |
|
step_y: float = 1.0, |
|
orig_x: float = 0, |
|
orig_y: float = 0, |
|
y_up: bool = False, |
|
device: Optional[torch.device] = None, |
|
) -> torch.Tensor: |
|
x, y = torch.meshgrid( |
|
[ |
|
torch.arange(orig_x, w + orig_x, step_x, device=device), |
|
torch.arange(orig_y, h + orig_y, step_y, device=device), |
|
], |
|
indexing="xy", |
|
) |
|
if y_up: |
|
y = y.flip(-2) |
|
grid = torch.stack((x, y), -1) |
|
return grid |
|
|
|
|
|
@torch.jit.script |
|
def rotmat2d(angle: torch.Tensor) -> torch.Tensor: |
|
c = torch.cos(angle) |
|
s = torch.sin(angle) |
|
R = torch.stack([c, -s, s, c], -1).reshape(angle.shape + (2, 2)) |
|
return R |
|
|
|
|
|
@torch.jit.script |
|
def rotmat2d_grad(angle: torch.Tensor) -> torch.Tensor: |
|
c = torch.cos(angle) |
|
s = torch.sin(angle) |
|
R = torch.stack([-s, -c, c, -s], -1).reshape(angle.shape + (2, 2)) |
|
return R |
|
|
|
|
|
def deg2rad(x): |
|
return x * math.pi / 180 |
|
|
|
|
|
def rad2deg(x): |
|
return x * 180 / math.pi |
|
|