Spaces:
Sleeping
Sleeping
| from .base_model import BaseModel | |
| from . import networks | |
| class TestModel(BaseModel): | |
| """ This TesteModel can be used to generate CycleGAN results for only one direction. | |
| This model will automatically set '--dataset_mode single', which only loads the images from one collection. | |
| See the test instruction for more details. | |
| """ | |
| def modify_commandline_options(parser, is_train=True): | |
| """Add new dataset-specific options, and rewrite default values for existing options. | |
| Parameters: | |
| parser -- original option parser | |
| is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. | |
| Returns: | |
| the modified parser. | |
| The model can only be used during test time. It requires '--dataset_mode single'. | |
| You need to specify the network using the option '--model_suffix'. | |
| """ | |
| assert not is_train, 'TestModel cannot be used during training time' | |
| parser.set_defaults(dataset_mode='single') | |
| parser.add_argument('--model_suffix', type=str, default='', help='In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.') | |
| return parser | |
| def __init__(self, opt): | |
| """Initialize the pix2pix class. | |
| Parameters: | |
| opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions | |
| """ | |
| assert(not opt.isTrain) | |
| BaseModel.__init__(self, opt) | |
| # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> | |
| self.loss_names = [] | |
| # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> | |
| self.visual_names = ['real', 'fake'] | |
| # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks> | |
| self.model_names = ['G' + opt.model_suffix] # only generator is needed. | |
| self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, | |
| opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) | |
| # assigns the model to self.netG_[suffix] so that it can be loaded | |
| # please see <BaseModel.load_networks> | |
| setattr(self, 'netG' + opt.model_suffix, self.netG) # store netG in self. | |
| def set_input(self, input): | |
| """Unpack input data from the dataloader and perform necessary pre-processing steps. | |
| Parameters: | |
| input: a dictionary that contains the data itself and its metadata information. | |
| We need to use 'single_dataset' dataset mode. It only load images from one domain. | |
| """ | |
| self.real = input['A'].to(self.device) | |
| self.image_paths = input['A_paths'] | |
| def forward(self): | |
| """Run forward pass.""" | |
| self.fake = self.netG(self.real) # G(real) | |
| def optimize_parameters(self): | |
| """No optimization for test model.""" | |
| pass | |