Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
from util import util | |
import torch | |
import models | |
import data | |
class BaseOptions(): | |
"""This class defines options used during both training and test time. | |
It also implements several helper functions such as parsing, printing, and saving the options. | |
It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class. | |
""" | |
def __init__(self): | |
"""Reset the class; indicates the class hasn't been initailized""" | |
self.initialized = False | |
def initialize(self, parser): | |
"""Define the common options that are used in both training and test.""" | |
# basic parameters | |
parser.add_argument('--dataroot', required=True, help='path to images (should have subfolders trainA, trainB, valA, valB, etc)') | |
parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models') | |
parser.add_argument('--gpu_ids', type=str, default='-1', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') | |
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') | |
# model parameters | |
parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]') | |
parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels: 3 for RGB and 1 for grayscale') | |
parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels: 3 for RGB and 1 for grayscale') | |
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer') | |
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer') | |
parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator') | |
parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]') | |
parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers') | |
parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]') | |
parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]') | |
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') | |
parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator') | |
# dataset parameters | |
parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]') | |
parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA') | |
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') | |
parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data') | |
parser.add_argument('--batch_size', type=int, default=1, help='input batch size') | |
parser.add_argument('--load_size', type=int, default=286, help='scale images to this size') | |
parser.add_argument('--crop_size', type=int, default=256, help='then crop to this size') | |
parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') | |
parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]') | |
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation') | |
parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML') | |
# additional parameters | |
parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') | |
parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]') | |
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information') | |
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}') | |
# wandb parameters | |
parser.add_argument('--use_wandb', action='store_true', help='if specified, then init wandb logging') | |
parser.add_argument('--wandb_project_name', type=str, default='CycleGAN-and-pix2pix', help='specify wandb project name') | |
self.initialized = True | |
return parser | |
def gather_options(self): | |
"""Initialize our parser with basic options(only once). | |
Add additional model-specific and dataset-specific options. | |
These options are defined in the <modify_commandline_options> function | |
in model and dataset classes. | |
""" | |
if not self.initialized: # check if it has been initialized | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser = self.initialize(parser) | |
# get the basic options | |
opt, _ = parser.parse_known_args() | |
# modify model-related parser options | |
model_name = opt.model | |
model_option_setter = models.get_option_setter(model_name) | |
parser = model_option_setter(parser, self.isTrain) | |
opt, _ = parser.parse_known_args() # parse again with new defaults | |
# modify dataset-related parser options | |
dataset_name = opt.dataset_mode | |
dataset_option_setter = data.get_option_setter(dataset_name) | |
parser = dataset_option_setter(parser, self.isTrain) | |
# save and return the parser | |
self.parser = parser | |
return parser.parse_args() | |
def print_options(self, opt): | |
"""Print and save options | |
It will print both current options and default values(if different). | |
It will save options into a text file / [checkpoints_dir] / opt.txt | |
""" | |
message = '' | |
message += '----------------- Options ---------------\n' | |
for k, v in sorted(vars(opt).items()): | |
comment = '' | |
default = self.parser.get_default(k) | |
if v != default: | |
comment = '\t[default: %s]' % str(default) | |
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) | |
message += '----------------- End -------------------' | |
print(message) | |
# save to the disk | |
expr_dir = os.path.join(opt.checkpoints_dir, opt.name) | |
util.mkdirs(expr_dir) | |
file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase)) | |
with open(file_name, 'wt') as opt_file: | |
opt_file.write(message) | |
opt_file.write('\n') | |
def parse(self): | |
"""Parse our options, create checkpoints directory suffix, and set up gpu device.""" | |
opt = self.gather_options() | |
opt.isTrain = self.isTrain # train or test | |
# process opt.suffix | |
if opt.suffix: | |
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' | |
opt.name = opt.name + suffix | |
self.print_options(opt) | |
# set gpu ids | |
str_ids = opt.gpu_ids.split(',') | |
opt.gpu_ids = [] | |
for str_id in str_ids: | |
id = int(str_id) | |
if id >= 0: | |
opt.gpu_ids.append(id) | |
if len(opt.gpu_ids) > 0: | |
torch.cuda.set_device(opt.gpu_ids[0]) | |
self.opt = opt | |
return self.opt | |