Spaces:
Sleeping
Sleeping
import os | |
from data.base_dataset import BaseDataset, get_transform | |
from data.image_folder import make_dataset | |
from skimage import color # require skimage | |
from PIL import Image | |
import numpy as np | |
import torchvision.transforms as transforms | |
class ColorizationDataset(BaseDataset): | |
"""This dataset class can load a set of natural images in RGB, and convert RGB format into (L, ab) pairs in Lab color space. | |
This dataset is required by pix2pix-based colorization model ('--model colorization') | |
""" | |
def modify_commandline_options(parser, is_train): | |
"""Add new dataset-specific options, and rewrite default values for existing options. | |
Parameters: | |
parser -- original option parser | |
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. | |
Returns: | |
the modified parser. | |
By default, the number of channels for input image is 1 (L) and | |
the number of channels for output image is 2 (ab). The direction is from A to B | |
""" | |
parser.set_defaults(input_nc=1, output_nc=2, direction='AtoB') | |
return parser | |
def __init__(self, opt): | |
"""Initialize this dataset class. | |
Parameters: | |
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions | |
""" | |
BaseDataset.__init__(self, opt) | |
self.dir = os.path.join(opt.dataroot, opt.phase) | |
self.AB_paths = sorted(make_dataset(self.dir, opt.max_dataset_size)) | |
assert(opt.input_nc == 1 and opt.output_nc == 2 and opt.direction == 'AtoB') | |
self.transform = get_transform(self.opt, convert=False) | |
def __getitem__(self, index): | |
"""Return a data point and its metadata information. | |
Parameters: | |
index - - a random integer for data indexing | |
Returns a dictionary that contains A, B, A_paths and B_paths | |
A (tensor) - - the L channel of an image | |
B (tensor) - - the ab channels of the same image | |
A_paths (str) - - image paths | |
B_paths (str) - - image paths (same as A_paths) | |
""" | |
path = self.AB_paths[index] | |
im = Image.open(path).convert('RGB') | |
im = self.transform(im) | |
im = np.array(im) | |
lab = color.rgb2lab(im).astype(np.float32) | |
lab_t = transforms.ToTensor()(lab) | |
A = lab_t[[0], ...] / 50.0 - 1.0 | |
B = lab_t[[1, 2], ...] / 110.0 | |
return {'A': A, 'B': B, 'A_paths': path, 'B_paths': path} | |
def __len__(self): | |
"""Return the total number of images in the dataset.""" | |
return len(self.AB_paths) | |