Spaces:
Running
Running
geekyrakshit
commited on
Commit
•
fdb575d
1
Parent(s):
2633ee9
add: PromptInjectionLlamaGuardrail
Browse files
guardrails_genie/guardrails/__init__.py
CHANGED
@@ -6,6 +6,7 @@ from guardrails_genie.guardrails.entity_recognition import (
|
|
6 |
)
|
7 |
from guardrails_genie.guardrails.injection import (
|
8 |
PromptInjectionClassifierGuardrail,
|
|
|
9 |
PromptInjectionSurveyGuardrail,
|
10 |
)
|
11 |
from guardrails_genie.guardrails.secrets_detection import SecretsDetectionGuardrail
|
@@ -13,6 +14,7 @@ from guardrails_genie.guardrails.secrets_detection import SecretsDetectionGuardr
|
|
13 |
from .manager import GuardrailManager
|
14 |
|
15 |
__all__ = [
|
|
|
16 |
"PromptInjectionSurveyGuardrail",
|
17 |
"PromptInjectionClassifierGuardrail",
|
18 |
"PresidioEntityRecognitionGuardrail",
|
|
|
6 |
)
|
7 |
from guardrails_genie.guardrails.injection import (
|
8 |
PromptInjectionClassifierGuardrail,
|
9 |
+
PromptInjectionLlamaGuardrail,
|
10 |
PromptInjectionSurveyGuardrail,
|
11 |
)
|
12 |
from guardrails_genie.guardrails.secrets_detection import SecretsDetectionGuardrail
|
|
|
14 |
from .manager import GuardrailManager
|
15 |
|
16 |
__all__ = [
|
17 |
+
"PromptInjectionLlamaGuardrail",
|
18 |
"PromptInjectionSurveyGuardrail",
|
19 |
"PromptInjectionClassifierGuardrail",
|
20 |
"PresidioEntityRecognitionGuardrail",
|
guardrails_genie/guardrails/injection/__init__.py
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
from .classifier_guardrail import PromptInjectionClassifierGuardrail
|
|
|
2 |
from .survey_guardrail import PromptInjectionSurveyGuardrail
|
3 |
|
4 |
-
__all__ = [
|
|
|
|
|
|
|
|
|
|
1 |
from .classifier_guardrail import PromptInjectionClassifierGuardrail
|
2 |
+
from .llama_prompt_guardrail import PromptInjectionLlamaGuardrail
|
3 |
from .survey_guardrail import PromptInjectionSurveyGuardrail
|
4 |
|
5 |
+
__all__ = [
|
6 |
+
"PromptInjectionLlamaGuardrail",
|
7 |
+
"PromptInjectionSurveyGuardrail",
|
8 |
+
"PromptInjectionClassifierGuardrail",
|
9 |
+
]
|
guardrails_genie/guardrails/injection/llama_prompt_guardrail.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import weave
|
6 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
7 |
+
|
8 |
+
from ..base import Guardrail
|
9 |
+
|
10 |
+
|
11 |
+
class PromptInjectionLlamaGuardrail(Guardrail):
|
12 |
+
model_name: str = "meta-llama/Prompt-Guard-86M"
|
13 |
+
max_sequence_length: int = 512
|
14 |
+
temperature: float = 1.0
|
15 |
+
jailbreak_score_threshold: float = 0.5
|
16 |
+
indirect_injection_score_threshold: float = 0.5
|
17 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
_tokenizer: Optional[AutoTokenizer] = None
|
19 |
+
_model: Optional[AutoModelForSequenceClassification] = None
|
20 |
+
|
21 |
+
def model_post_init(self, __context):
|
22 |
+
self._tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
23 |
+
self._model = AutoModelForSequenceClassification.from_pretrained(
|
24 |
+
self.model_name
|
25 |
+
)
|
26 |
+
|
27 |
+
def get_class_probabilities(self, prompt):
|
28 |
+
inputs = self._tokenizer(
|
29 |
+
prompt,
|
30 |
+
return_tensors="pt",
|
31 |
+
padding=True,
|
32 |
+
truncation=True,
|
33 |
+
max_length=self.max_sequence_length,
|
34 |
+
)
|
35 |
+
inputs = inputs.to(self.device)
|
36 |
+
with torch.no_grad():
|
37 |
+
logits = self._model(**inputs).logits
|
38 |
+
scaled_logits = logits / self.temperature
|
39 |
+
probabilities = F.softmax(scaled_logits, dim=-1)
|
40 |
+
return probabilities
|
41 |
+
|
42 |
+
@weave.op()
|
43 |
+
def get_score(self, prompt: str):
|
44 |
+
probabilities = self.get_class_probabilities(prompt)
|
45 |
+
return {
|
46 |
+
"jailbreak_score": probabilities[0, 2].item(),
|
47 |
+
"indirect_injection_score": (
|
48 |
+
probabilities[0, 1] + probabilities[0, 2]
|
49 |
+
).item(),
|
50 |
+
}
|
51 |
+
|
52 |
+
@weave.op()
|
53 |
+
def guard(self, prompt: str):
|
54 |
+
score = self.get_score(prompt)
|
55 |
+
summary = ""
|
56 |
+
if score["jailbreak_score"] > self.jailbreak_score_threshold:
|
57 |
+
confidence = round(score["jailbreak_score"] * 100, 2)
|
58 |
+
summary += f"Prompt is deemed to be a jailbreak attempt with {confidence}% confidence."
|
59 |
+
if score["indirect_injection_score"] > self.indirect_injection_score_threshold:
|
60 |
+
confidence = round(score["indirect_injection_score"] * 100, 2)
|
61 |
+
summary += f"Prompt is deemed to be an indirect injection attempt with {confidence}% confidence."
|
62 |
+
return {
|
63 |
+
"safe": score["jailbreak_score"] < self.jailbreak_score_threshold
|
64 |
+
and score["indirect_injection_score"]
|
65 |
+
< self.indirect_injection_score_threshold,
|
66 |
+
"summary": summary,
|
67 |
+
}
|
68 |
+
|
69 |
+
@weave.op()
|
70 |
+
def predict(self, prompt: str):
|
71 |
+
return self.guard(prompt)
|