Spaces:
Running
Running
geekyrakshit
commited on
Commit
•
dfbca8a
1
Parent(s):
a202ba5
add: visualization of ROC curve + score distribution
Browse files
guardrails_genie/train/llama_guard.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
@@ -98,28 +98,87 @@ class LlamaGuardFineTuner:
|
|
98 |
return scores
|
99 |
|
100 |
def visualize_roc_curve(self, test_scores: list[float]):
|
101 |
-
plt.figure(figsize=(8, 6))
|
102 |
test_labels = [int(elt) for elt in self.test_dataset["label"]]
|
103 |
fpr, tpr, _ = roc_curve(test_labels, test_scores)
|
104 |
roc_auc = roc_auc_score(test_labels, test_scores)
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
if self.streamlit_mode:
|
120 |
-
st.
|
121 |
else:
|
122 |
-
|
123 |
|
124 |
def evaluate_model(
|
125 |
self,
|
@@ -138,4 +197,5 @@ class LlamaGuardFineTuner:
|
|
138 |
max_length=max_length,
|
139 |
)
|
140 |
self.visualize_roc_curve(test_scores)
|
|
|
141 |
return test_scores
|
|
|
1 |
+
import plotly.graph_objects as go
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
|
|
98 |
return scores
|
99 |
|
100 |
def visualize_roc_curve(self, test_scores: list[float]):
|
|
|
101 |
test_labels = [int(elt) for elt in self.test_dataset["label"]]
|
102 |
fpr, tpr, _ = roc_curve(test_labels, test_scores)
|
103 |
roc_auc = roc_auc_score(test_labels, test_scores)
|
104 |
+
|
105 |
+
fig = go.Figure()
|
106 |
+
fig.add_trace(
|
107 |
+
go.Scatter(
|
108 |
+
x=fpr,
|
109 |
+
y=tpr,
|
110 |
+
mode="lines",
|
111 |
+
name=f"ROC curve (area = {roc_auc:.3f})",
|
112 |
+
line=dict(color="darkorange", width=2),
|
113 |
+
)
|
114 |
+
)
|
115 |
+
fig.add_trace(
|
116 |
+
go.Scatter(
|
117 |
+
x=[0, 1],
|
118 |
+
y=[0, 1],
|
119 |
+
mode="lines",
|
120 |
+
name="Random Guess",
|
121 |
+
line=dict(color="navy", width=2, dash="dash"),
|
122 |
+
)
|
123 |
+
)
|
124 |
+
|
125 |
+
fig.update_layout(
|
126 |
+
title="Receiver Operating Characteristic",
|
127 |
+
xaxis_title="False Positive Rate",
|
128 |
+
yaxis_title="True Positive Rate",
|
129 |
+
xaxis=dict(range=[0.0, 1.0]),
|
130 |
+
yaxis=dict(range=[0.0, 1.05]),
|
131 |
+
legend=dict(x=0.8, y=0.2),
|
132 |
)
|
133 |
+
|
134 |
+
if self.streamlit_mode:
|
135 |
+
st.plotly_chart(fig)
|
136 |
+
else:
|
137 |
+
fig.show()
|
138 |
+
|
139 |
+
def visualize_score_distribution(self, scores: list[float]):
|
140 |
+
test_labels = [int(elt) for elt in self.test_dataset["label"]]
|
141 |
+
positive_scores = [scores[i] for i in range(500) if test_labels[i] == 1]
|
142 |
+
negative_scores = [scores[i] for i in range(500) if test_labels[i] == 0]
|
143 |
+
|
144 |
+
fig = go.Figure()
|
145 |
+
|
146 |
+
# Plotting positive scores
|
147 |
+
fig.add_trace(
|
148 |
+
go.Histogram(
|
149 |
+
x=positive_scores,
|
150 |
+
histnorm="probability density",
|
151 |
+
name="Positive",
|
152 |
+
marker_color="darkblue",
|
153 |
+
opacity=0.75,
|
154 |
+
)
|
155 |
+
)
|
156 |
+
|
157 |
+
# Plotting negative scores
|
158 |
+
fig.add_trace(
|
159 |
+
go.Histogram(
|
160 |
+
x=negative_scores,
|
161 |
+
histnorm="probability density",
|
162 |
+
name="Negative",
|
163 |
+
marker_color="darkred",
|
164 |
+
opacity=0.75,
|
165 |
+
)
|
166 |
+
)
|
167 |
+
|
168 |
+
# Updating layout
|
169 |
+
fig.update_layout(
|
170 |
+
title="Score Distribution for Positive and Negative Examples",
|
171 |
+
xaxis_title="Score",
|
172 |
+
yaxis_title="Density",
|
173 |
+
barmode="overlay",
|
174 |
+
legend_title="Scores",
|
175 |
+
)
|
176 |
+
|
177 |
+
# Display the plot
|
178 |
if self.streamlit_mode:
|
179 |
+
st.plotly_chart(fig)
|
180 |
else:
|
181 |
+
fig.show()
|
182 |
|
183 |
def evaluate_model(
|
184 |
self,
|
|
|
197 |
max_length=max_length,
|
198 |
)
|
199 |
self.visualize_roc_curve(test_scores)
|
200 |
+
self.visualize_score_distribution(test_scores)
|
201 |
return test_scores
|