Spaces:
Running
Running
add running pii eval script
Browse files
.gitignore
CHANGED
@@ -168,4 +168,5 @@ temp.txt
|
|
168 |
**.csv
|
169 |
binary-classifier/
|
170 |
wandb/
|
171 |
-
artifacts/
|
|
|
|
168 |
**.csv
|
169 |
binary-classifier/
|
170 |
wandb/
|
171 |
+
artifacts/
|
172 |
+
evaluation_results/
|
guardrails_genie/guardrails/entity_recognition/pii_examples/pii_benchmark.py
CHANGED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
import random
|
4 |
+
from tqdm import tqdm
|
5 |
+
import json
|
6 |
+
from pathlib import Path
|
7 |
+
import weave
|
8 |
+
|
9 |
+
def load_ai4privacy_dataset(num_samples: int = 100, split: str = "validation") -> List[Dict]:
|
10 |
+
"""
|
11 |
+
Load and prepare samples from the ai4privacy dataset.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
num_samples: Number of samples to evaluate
|
15 |
+
split: Dataset split to use ("train" or "validation")
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
List of prepared test cases
|
19 |
+
"""
|
20 |
+
# Load the dataset
|
21 |
+
dataset = load_dataset("ai4privacy/pii-masking-400k")
|
22 |
+
|
23 |
+
# Get the specified split
|
24 |
+
data_split = dataset[split]
|
25 |
+
|
26 |
+
# Randomly sample entries if num_samples is less than total
|
27 |
+
if num_samples < len(data_split):
|
28 |
+
indices = random.sample(range(len(data_split)), num_samples)
|
29 |
+
samples = [data_split[i] for i in indices]
|
30 |
+
else:
|
31 |
+
samples = data_split
|
32 |
+
|
33 |
+
# Convert to test case format
|
34 |
+
test_cases = []
|
35 |
+
for sample in samples:
|
36 |
+
# Extract entities from privacy_mask
|
37 |
+
entities: Dict[str, List[str]] = {}
|
38 |
+
for entity in sample['privacy_mask']:
|
39 |
+
label = entity['label']
|
40 |
+
value = entity['value']
|
41 |
+
if label not in entities:
|
42 |
+
entities[label] = []
|
43 |
+
entities[label].append(value)
|
44 |
+
|
45 |
+
test_case = {
|
46 |
+
"description": f"AI4Privacy Sample (ID: {sample['uid']})",
|
47 |
+
"input_text": sample['source_text'],
|
48 |
+
"expected_entities": entities,
|
49 |
+
"masked_text": sample['masked_text'],
|
50 |
+
"language": sample['language'],
|
51 |
+
"locale": sample['locale']
|
52 |
+
}
|
53 |
+
test_cases.append(test_case)
|
54 |
+
|
55 |
+
return test_cases
|
56 |
+
|
57 |
+
@weave.op()
|
58 |
+
def evaluate_model(guardrail, test_cases: List[Dict]) -> Tuple[Dict, List[Dict]]:
|
59 |
+
"""
|
60 |
+
Evaluate a model on the test cases.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
guardrail: Entity recognition guardrail to evaluate
|
64 |
+
test_cases: List of test cases
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
Tuple of (metrics dict, detailed results list)
|
68 |
+
"""
|
69 |
+
metrics = {
|
70 |
+
"total": len(test_cases),
|
71 |
+
"passed": 0,
|
72 |
+
"failed": 0,
|
73 |
+
"entity_metrics": {} # Will store precision/recall per entity type
|
74 |
+
}
|
75 |
+
|
76 |
+
detailed_results = []
|
77 |
+
|
78 |
+
for test_case in tqdm(test_cases, desc="Evaluating samples"):
|
79 |
+
# Run detection
|
80 |
+
result = guardrail.guard(test_case['input_text'])
|
81 |
+
detected = result.detected_entities
|
82 |
+
expected = test_case['expected_entities']
|
83 |
+
|
84 |
+
# Track entity-level metrics
|
85 |
+
all_entity_types = set(list(detected.keys()) + list(expected.keys()))
|
86 |
+
entity_results = {}
|
87 |
+
|
88 |
+
for entity_type in all_entity_types:
|
89 |
+
detected_set = set(detected.get(entity_type, []))
|
90 |
+
expected_set = set(expected.get(entity_type, []))
|
91 |
+
|
92 |
+
# Calculate metrics
|
93 |
+
true_positives = len(detected_set & expected_set)
|
94 |
+
false_positives = len(detected_set - expected_set)
|
95 |
+
false_negatives = len(expected_set - detected_set)
|
96 |
+
|
97 |
+
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
|
98 |
+
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
|
99 |
+
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
100 |
+
|
101 |
+
entity_results[entity_type] = {
|
102 |
+
"precision": precision,
|
103 |
+
"recall": recall,
|
104 |
+
"f1": f1,
|
105 |
+
"true_positives": true_positives,
|
106 |
+
"false_positives": false_positives,
|
107 |
+
"false_negatives": false_negatives
|
108 |
+
}
|
109 |
+
|
110 |
+
# Aggregate metrics
|
111 |
+
if entity_type not in metrics["entity_metrics"]:
|
112 |
+
metrics["entity_metrics"][entity_type] = {
|
113 |
+
"total_true_positives": 0,
|
114 |
+
"total_false_positives": 0,
|
115 |
+
"total_false_negatives": 0
|
116 |
+
}
|
117 |
+
metrics["entity_metrics"][entity_type]["total_true_positives"] += true_positives
|
118 |
+
metrics["entity_metrics"][entity_type]["total_false_positives"] += false_positives
|
119 |
+
metrics["entity_metrics"][entity_type]["total_false_negatives"] += false_negatives
|
120 |
+
|
121 |
+
# Store detailed result
|
122 |
+
detailed_result = {
|
123 |
+
"id": test_case.get("description", ""),
|
124 |
+
"language": test_case.get("language", ""),
|
125 |
+
"locale": test_case.get("locale", ""),
|
126 |
+
"input_text": test_case["input_text"],
|
127 |
+
"expected_entities": expected,
|
128 |
+
"detected_entities": detected,
|
129 |
+
"entity_metrics": entity_results,
|
130 |
+
"anonymized_text": result.anonymized_text if result.anonymized_text else None
|
131 |
+
}
|
132 |
+
detailed_results.append(detailed_result)
|
133 |
+
|
134 |
+
# Update pass/fail counts
|
135 |
+
if all(entity_results[et]["f1"] == 1.0 for et in entity_results):
|
136 |
+
metrics["passed"] += 1
|
137 |
+
else:
|
138 |
+
metrics["failed"] += 1
|
139 |
+
|
140 |
+
# Calculate final entity metrics
|
141 |
+
for entity_type, counts in metrics["entity_metrics"].items():
|
142 |
+
tp = counts["total_true_positives"]
|
143 |
+
fp = counts["total_false_positives"]
|
144 |
+
fn = counts["total_false_negatives"]
|
145 |
+
|
146 |
+
precision = tp / (tp + fp) if (tp + fp) > 0 else 0
|
147 |
+
recall = tp / (tp + fn) if (tp + fn) > 0 else 0
|
148 |
+
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
149 |
+
|
150 |
+
metrics["entity_metrics"][entity_type].update({
|
151 |
+
"precision": precision,
|
152 |
+
"recall": recall,
|
153 |
+
"f1": f1
|
154 |
+
})
|
155 |
+
|
156 |
+
return metrics, detailed_results
|
157 |
+
|
158 |
+
def save_results(metrics: Dict, detailed_results: List[Dict], model_name: str, output_dir: str = "evaluation_results"):
|
159 |
+
"""Save evaluation results to files"""
|
160 |
+
output_dir = Path(output_dir)
|
161 |
+
output_dir.mkdir(exist_ok=True)
|
162 |
+
|
163 |
+
# Save metrics summary
|
164 |
+
with open(output_dir / f"{model_name}_metrics.json", "w") as f:
|
165 |
+
json.dump(metrics, f, indent=2)
|
166 |
+
|
167 |
+
# Save detailed results
|
168 |
+
with open(output_dir / f"{model_name}_detailed_results.json", "w") as f:
|
169 |
+
json.dump(detailed_results, f, indent=2)
|
170 |
+
|
171 |
+
def print_metrics_summary(metrics: Dict):
|
172 |
+
"""Print a summary of the evaluation metrics"""
|
173 |
+
print("\nEvaluation Summary")
|
174 |
+
print("=" * 80)
|
175 |
+
print(f"Total Samples: {metrics['total']}")
|
176 |
+
print(f"Passed: {metrics['passed']}")
|
177 |
+
print(f"Failed: {metrics['failed']}")
|
178 |
+
print(f"Success Rate: {(metrics['passed']/metrics['total'])*100:.1f}%")
|
179 |
+
|
180 |
+
print("\nEntity-level Metrics:")
|
181 |
+
print("-" * 80)
|
182 |
+
print(f"{'Entity Type':<20} {'Precision':>10} {'Recall':>10} {'F1':>10}")
|
183 |
+
print("-" * 80)
|
184 |
+
for entity_type, entity_metrics in metrics["entity_metrics"].items():
|
185 |
+
print(f"{entity_type:<20} {entity_metrics['precision']:>10.2f} {entity_metrics['recall']:>10.2f} {entity_metrics['f1']:>10.2f}")
|
186 |
+
|
187 |
+
def main():
|
188 |
+
"""Main evaluation function"""
|
189 |
+
weave.init("guardrails-genie-pii-evaluation")
|
190 |
+
|
191 |
+
# Load test cases
|
192 |
+
test_cases = load_ai4privacy_dataset(num_samples=100)
|
193 |
+
|
194 |
+
# Initialize models to evaluate
|
195 |
+
models = {
|
196 |
+
"regex": RegexEntityRecognitionGuardrail(should_anonymize=True),
|
197 |
+
"presidio": PresidioEntityRecognitionGuardrail(should_anonymize=True),
|
198 |
+
"transformers": TransformersEntityRecognitionGuardrail(should_anonymize=True)
|
199 |
+
}
|
200 |
+
|
201 |
+
# Evaluate each model
|
202 |
+
for model_name, guardrail in models.items():
|
203 |
+
print(f"\nEvaluating {model_name} model...")
|
204 |
+
metrics, detailed_results = evaluate_model(guardrail, test_cases)
|
205 |
+
|
206 |
+
# Print and save results
|
207 |
+
print_metrics_summary(metrics)
|
208 |
+
save_results(metrics, detailed_results, model_name)
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
from guardrails_genie.guardrails.entity_recognition.regex_entity_recognition_guardrail import RegexEntityRecognitionGuardrail
|
212 |
+
from guardrails_genie.guardrails.entity_recognition.presidio_entity_recognition_guardrail import PresidioEntityRecognitionGuardrail
|
213 |
+
from guardrails_genie.guardrails.entity_recognition.transformers_entity_recognition_guardrail import TransformersEntityRecognitionGuardrail
|
214 |
+
|
215 |
+
main()
|