Spaces:
Running
Running
import importlib | |
import os | |
import streamlit as st | |
import weave | |
from dotenv import load_dotenv | |
from guardrails_genie.guardrails import GuardrailManager | |
from guardrails_genie.llm import OpenAIModel | |
def initialize_session_state(): | |
load_dotenv() | |
weave.init(project_name=os.getenv("WEAVE_PROJECT")) | |
if "guardrails" not in st.session_state: | |
st.session_state.guardrails = [] | |
if "guardrail_names" not in st.session_state: | |
st.session_state.guardrail_names = [] | |
if "guardrails_manager" not in st.session_state: | |
st.session_state.guardrails_manager = None | |
if "initialize_guardrails" not in st.session_state: | |
st.session_state.initialize_guardrails = False | |
if "system_prompt" not in st.session_state: | |
st.session_state.system_prompt = "" | |
if "user_prompt" not in st.session_state: | |
st.session_state.user_prompt = "" | |
if "test_guardrails" not in st.session_state: | |
st.session_state.test_guardrails = False | |
if "llm_model" not in st.session_state: | |
st.session_state.llm_model = None | |
def initialize_guardrails(): | |
st.session_state.guardrails = [] | |
for guardrail_name in st.session_state.guardrail_names: | |
if guardrail_name == "PromptInjectionSurveyGuardrail": | |
survey_guardrail_model = st.sidebar.selectbox( | |
"Survey Guardrail LLM", ["", "gpt-4o-mini", "gpt-4o"] | |
) | |
if survey_guardrail_model: | |
st.session_state.guardrails.append( | |
getattr( | |
importlib.import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(llm_model=OpenAIModel(model_name=survey_guardrail_model)) | |
) | |
elif guardrail_name == "PromptInjectionClassifierGuardrail": | |
classifier_model_name = st.sidebar.selectbox( | |
"Classifier Guardrail Model", | |
[ | |
"", | |
"ProtectAI/deberta-v3-base-prompt-injection-v2", | |
"wandb://geekyrakshit/guardrails-genie/model-6rwqup9b:v3", | |
], | |
) | |
if classifier_model_name != "": | |
st.session_state.guardrails.append( | |
getattr( | |
importlib.import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(model_name=classifier_model_name) | |
) | |
elif guardrail_name == "PresidioEntityRecognitionGuardrail": | |
st.session_state.guardrails.append( | |
getattr( | |
importlib.import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(should_anonymize=True) | |
) | |
elif guardrail_name == "RegexEntityRecognitionGuardrail": | |
st.session_state.guardrails.append( | |
getattr( | |
importlib.import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(should_anonymize=True) | |
) | |
elif guardrail_name == "TransformersEntityRecognitionGuardrail": | |
st.session_state.guardrails.append( | |
getattr( | |
importlib.import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(should_anonymize=True) | |
) | |
elif guardrail_name == "RestrictedTermsJudge": | |
st.session_state.guardrails.append( | |
getattr( | |
importlib.import_module("guardrails_genie.guardrails"), | |
guardrail_name, | |
)(should_anonymize=True) | |
) | |
st.session_state.guardrails_manager = GuardrailManager( | |
guardrails=st.session_state.guardrails | |
) | |
initialize_session_state() | |
st.title(":material/robot: Guardrails Genie Playground") | |
openai_model = st.sidebar.selectbox( | |
"OpenAI LLM for Chat", ["", "gpt-4o-mini", "gpt-4o"] | |
) | |
chat_condition = openai_model != "" | |
guardrails = [] | |
guardrail_names = st.sidebar.multiselect( | |
label="Select Guardrails", | |
options=[ | |
cls_name | |
for cls_name, cls_obj in vars( | |
importlib.import_module("guardrails_genie.guardrails") | |
).items() | |
if isinstance(cls_obj, type) and cls_name != "GuardrailManager" | |
], | |
) | |
st.session_state.guardrail_names = guardrail_names | |
if st.sidebar.button("Initialize Guardrails") and chat_condition: | |
st.session_state.initialize_guardrails = True | |
if st.session_state.initialize_guardrails: | |
with st.sidebar.status("Initializing Guardrails..."): | |
initialize_guardrails() | |
st.session_state.llm_model = OpenAIModel(model_name=openai_model) | |
user_prompt = st.text_area("User Prompt", value="") | |
st.session_state.user_prompt = user_prompt | |
test_guardrails_button = st.button("Test Guardrails") | |
st.session_state.test_guardrails = test_guardrails_button | |
if st.session_state.test_guardrails: | |
with st.sidebar.status("Running Guardrails..."): | |
guardrails_response, call = st.session_state.guardrails_manager.guard.call( | |
st.session_state.guardrails_manager, prompt=st.session_state.user_prompt | |
) | |
if guardrails_response["safe"]: | |
st.markdown( | |
f"\n\n---\nPrompt is safe! Explore guardrail trace on [Weave]({call.ui_url})\n\n---\n" | |
) | |
with st.sidebar.status("Generating response from LLM..."): | |
response, call = st.session_state.llm_model.predict.call( | |
st.session_state.llm_model, | |
user_prompts=st.session_state.user_prompt, | |
) | |
st.markdown( | |
response.choices[0].message.content | |
+ f"\n\n---\nExplore LLM generation trace on [Weave]({call.ui_url})" | |
) | |
else: | |
st.warning("Prompt is not safe!") | |
st.markdown(guardrails_response["summary"]) | |
st.markdown(f"Explore prompt trace on [Weave]({call.ui_url})") | |