wzhouxiff's picture
init
2890711
raw
history blame
3.14 kB
import cv2
import numpy as np
from gradio_utils.flow_utils import bivariate_Gaussian
OBJECT_MOTION_MODE = ["Provided Trajectory", "Custom Trajectory"]
PROVIDED_TRAJS = {
"horizon_1": "examples/trajectories/horizon_2.txt",
"swaying_1": "examples/trajectories/shake_1.txt",
"swaying_2": "examples/trajectories/shake_2.txt",
"swaying_3": "examples/trajectories/shaking_10.txt",
"curve_1": "examples/trajectories/curve_1.txt",
"curve_2": "examples/trajectories/curve_2.txt",
"curve_3": "examples/trajectories/curve_3.txt",
"curve_4": "examples/trajectories/curve_4.txt",
}
def read_points(file, video_len=16, reverse=False):
with open(file, 'r') as f:
lines = f.readlines()
points = []
for line in lines:
x, y = line.strip().split(',')
points.append((int(x), int(y)))
if reverse:
points = points[::-1]
if len(points) > video_len:
skip = len(points) // video_len
points = points[::skip]
points = points[:video_len]
return points
def get_provided_traj(traj_name):
traj = read_points(PROVIDED_TRAJS[traj_name])
# xrange from 256 to 1024
traj = [[int(1024*x/256), int(1024*y/256)] for x,y in traj]
return traj
blur_kernel = bivariate_Gaussian(99, 10, 10, 0, grid=None, isotropic=True)
def process_points(points):
frames = 16
defualt_points = [[512,512]]*16
if len(points) < 2:
return defualt_points
elif len(points) >= frames:
skip = len(points)//frames
return points[::skip][:15] + points[-1:]
else:
insert_num = frames - len(points)
insert_num_dict = {}
interval = len(points) - 1
n = insert_num // interval
m = insert_num % interval
for i in range(interval):
insert_num_dict[i] = n
for i in range(m):
insert_num_dict[i] += 1
res = []
for i in range(interval):
insert_points = []
x0,y0 = points[i]
x1,y1 = points[i+1]
delta_x = x1 - x0
delta_y = y1 - y0
for j in range(insert_num_dict[i]):
x = x0 + (j+1)/(insert_num_dict[i]+1)*delta_x
y = y0 + (j+1)/(insert_num_dict[i]+1)*delta_y
insert_points.append([int(x), int(y)])
res += points[i:i+1] + insert_points
res += points[-1:]
return res
def get_flow(points, video_len=16):
optical_flow = np.zeros((video_len, 256, 256, 2), dtype=np.float32)
for i in range(video_len-1):
p = points[i]
p1 = points[i+1]
optical_flow[i+1, p[1], p[0], 0] = p1[0] - p[0]
optical_flow[i+1, p[1], p[0], 1] = p1[1] - p[1]
for i in range(1, video_len):
optical_flow[i] = cv2.filter2D(optical_flow[i], -1, blur_kernel)
return optical_flow
def process_traj(points, device='cpu'):
xy_range = 1024
points = process_points(points)
points = [[int(256*x/xy_range), int(256*y/xy_range)] for x,y in points]
optical_flow = get_flow(points)
# optical_flow = torch.tensor(optical_flow).to(device)
return optical_flow