Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
import time | |
from PIL import Image | |
from deep_translator import GoogleTranslator | |
import json | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
timeout = 100 | |
def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=0.7): | |
if prompt == "" or prompt == None: | |
return None | |
if lora_id.strip() == "" or lora_id == None: | |
lora_id = "black-forest-labs/FLUX.1-dev" | |
key = random.randint(0, 999) | |
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip() | |
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') | |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mGeneration {key}:\033[0m {prompt}') | |
# If seed is -1, generate a random seed and use it | |
if seed == -1: | |
seed = random.randint(1, 1000000000) | |
payload = { | |
"inputs": prompt, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed, | |
} | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Error: Failed to get image. Response status: {response.status_code}") | |
print(f"Response content: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
raise gr.Error(f"{response.status_code}") | |
try: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') | |
return image, seed | |
except Exception as e: | |
print(f"Error when trying to open the image: {e}") | |
return None | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css = """ | |
#app-container { | |
max-width: 600px; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
""" | |
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: | |
gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>") | |
with gr.Column(elem_id="app-container"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") | |
with gr.Row(): | |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") | |
steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5) | |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) | |
with gr.Row(): | |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") | |
with gr.Row(): | |
seed_output = gr.Textbox(label="Seed Used", show_copy_button = True, elem_id="seed-output") | |
gr.Examples( | |
examples = examples, | |
inputs = [text_prompt], | |
) | |
text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=[image_output,seed_output]) | |
app.launch(show_api=False, share=False) |