hotdog-gradio / app.py
wall-e-zz's picture
Update app.py
a75112d
raw
history blame
534 Bytes
import gradio as gr
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
def predict(image):
predictions = pipeline(image)
return {p["label"]: p["score"] for p in predictions}
gr.Interface(
predict,
inputs=gr.inputs.Image(label="Upload hot dog candidate", type="filepath"),
outputs=gr.outputs.Label(num_top_classes=2),
title="Hot Dog? Or Not?",
allow_flagging="manual",
flagging_options=[("human", 0.999), ("animal", 0.999),]
).launch()