MBartTranslator / app.py
wall-e-zz's picture
Update app.py
58f896d
import re
import os
import sys
import torch
import gradio as gr
from transformers import MBart50TokenizerFast, MBartForConditionalGeneration
language_options = {
'中文': 'zh_CN',
'英语': 'en_XX',
'越南语': 'vi_VN',
'泰语': 'th_TH',
'日语': 'ja_XX',
'韩语': 'ko_KR',
}
languages = list(language_options.keys())
class MBartTranslator:
"""MBartTranslator class provides a simple interface for translating text using the MBart language model.
The class can translate between 50 languages and is based on the "facebook/mbart-large-50-many-to-many-mmt"
pre-trained MBart model. However, it is possible to use a different MBart model by specifying its name.
Attributes:
model (MBartForConditionalGeneration): The MBart language model.
tokenizer (MBart50TokenizerFast): The MBart tokenizer.
"""
def __init__(self, model_name="facebook/mbart-large-50-many-to-many-mmt", src_lang=None, tgt_lang=None):
self.supported_languages = [
"ar_AR",
"cs_CZ",
"de_DE",
"en_XX",
"es_XX",
"et_EE",
"fi_FI",
"fr_XX",
"gu_IN",
"hi_IN",
"it_IT",
"ja_XX",
"kk_KZ",
"ko_KR",
"lt_LT",
"lv_LV",
"my_MM",
"ne_NP",
"nl_XX",
"ro_RO",
"ru_RU",
"si_LK",
"tr_TR",
"vi_VN",
"zh_CN",
"af_ZA",
"az_AZ",
"bn_IN",
"fa_IR",
"he_IL",
"hr_HR",
"id_ID",
"ka_GE",
"km_KH",
"mk_MK",
"ml_IN",
"mn_MN",
"mr_IN",
"pl_PL",
"ps_AF",
"pt_XX",
"sv_SE",
"sw_KE",
"ta_IN",
"te_IN",
"th_TH",
"tl_XX",
"uk_UA",
"ur_PK",
"xh_ZA",
"gl_ES",
"sl_SI",
]
print("Building translator")
print("Loading generator (this may take few minutes the first time as I need to download the model)")
self.model = MBartForConditionalGeneration.from_pretrained(model_name).to(device)
print("Loading tokenizer")
self.tokenizer = MBart50TokenizerFast.from_pretrained(model_name, src_lang=src_lang, tgt_lang=tgt_lang)
print("Translator is ready")
def translate(self, text: str, input_language: str, output_language: str) -> str:
"""Translate the given text from the input language to the output language.
Args:
text (str): The text to translate.
input_language (str): The input language code (e.g. "hi_IN" for Hindi).
output_language (str): The output language code (e.g. "en_US" for English).
Returns:
str: The translated text.
"""
if input_language not in self.supported_languages:
raise ValueError(f"Input language not supported. Supported languages: {self.supported_languages}")
if output_language not in self.supported_languages:
raise ValueError(f"Output language not supported. Supported languages: {self.supported_languages}")
self.tokenizer.src_lang = input_language
encoded_input = self.tokenizer(text, return_tensors="pt").to(device)
generated_tokens = self.model.generate(
**encoded_input, forced_bos_token_id=self.tokenizer.lang_code_to_id[output_language]
)
translated_text = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
return translated_text[0]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
translator = MBartTranslator()
def translate(src, dst, content):
output = translator.translate(content, language_options[src], language_options[dst])
# output = translator.translate(content, "zh_CN", "en_XX")
return output
examples=[
['中文', '英语', '今天天气真不错!'],
['英语', '中文', "Life was a box of chocolates, you never know what you're gonna get."],
['中文', '泰语', '别放弃你的梦想,迟早有一天它会在你手里发光。'],
]
demo = gr.Interface(
fn=translate,
inputs=[
gr.Dropdown(
languages, label="源语言", value=languages[0], show_label=True
),
gr.Dropdown(
languages, label="目标语言", value=languages[1], show_label=True
),
gr.Textbox(label='内容', placeholder='这里输入要翻译的内容', lines=5)
],
outputs=[
gr.Textbox(label='结果', lines=5)
],
examples=examples
)
demo.launch(enable_queue=True)