Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
# Load the emotion detection pipeline | |
emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion") | |
def predict_emotion(text): | |
result = emotion_pipeline(text)[0] | |
label = result["label"] | |
score = result["score"] | |
return f"🧠 Emotion: {label.upper()} ({score:.2f})" | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=predict_emotion, | |
inputs=gr.Textbox(lines=3, placeholder="Type something emotional..."), | |
outputs="text", | |
title="🎭 LM Studios Emotion Detector", | |
description="Now with real emotional awareness: detects joy, anger, sadness, fear, love, and surprise.", | |
theme="default", | |
flagging_mode="never" | |
) | |
demo.launch() | |