Update app.py
Browse files
app.py
CHANGED
|
@@ -13,17 +13,14 @@ import tempfile
|
|
| 13 |
import uuid
|
| 14 |
import time
|
| 15 |
from concurrent.futures import ThreadPoolExecutor
|
| 16 |
-
import asyncio
|
| 17 |
|
| 18 |
torch.set_float32_matmul_precision("medium")
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
|
| 21 |
# Load both BiRefNet models
|
| 22 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 23 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True)
|
| 24 |
birefnet.to(device)
|
| 25 |
-
birefnet_lite = AutoModelForImageSegmentation.from_pretrained(
|
| 26 |
-
"ZhengPeng7/BiRefNet_lite", trust_remote_code=True)
|
| 27 |
birefnet_lite.to(device)
|
| 28 |
|
| 29 |
transform_image = transforms.Compose([
|
|
@@ -32,74 +29,77 @@ transform_image = transforms.Compose([
|
|
| 32 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 33 |
])
|
| 34 |
|
| 35 |
-
# Function to process a single frame
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
@spaces.GPU
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
| 90 |
elapsed_time = time.time() - start_time
|
| 91 |
-
yield
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
processed_video.write_videofile(temp_filepath, codec="libx264")
|
| 99 |
-
|
| 100 |
-
elapsed_time = time.time() - start_time
|
| 101 |
-
yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
|
| 102 |
-
yield processed_frames[-1], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
|
| 103 |
|
| 104 |
def process(image, bg, fast_mode=False):
|
| 105 |
image_size = image.size
|
|
|
|
| 13 |
import uuid
|
| 14 |
import time
|
| 15 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
| 16 |
|
| 17 |
torch.set_float32_matmul_precision("medium")
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
| 20 |
# Load both BiRefNet models
|
| 21 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True)
|
|
|
|
| 22 |
birefnet.to(device)
|
| 23 |
+
birefnet_lite = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet_lite", trust_remote_code=True)
|
|
|
|
| 24 |
birefnet_lite.to(device)
|
| 25 |
|
| 26 |
transform_image = transforms.Compose([
|
|
|
|
| 29 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 30 |
])
|
| 31 |
|
| 32 |
+
# Function to process a single frame
|
| 33 |
+
def process_frame(frame, bg_type, bg, fast_mode, bg_frame_index, background_frames, color):
|
| 34 |
+
try:
|
| 35 |
+
pil_image = Image.fromarray(frame)
|
| 36 |
+
if bg_type == "Color":
|
| 37 |
+
processed_image = process(pil_image, color, fast_mode)
|
| 38 |
+
elif bg_type == "Image":
|
| 39 |
+
processed_image = process(pil_image, bg, fast_mode)
|
| 40 |
+
elif bg_type == "Video":
|
| 41 |
+
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
| 42 |
+
bg_frame_index += 1
|
| 43 |
+
background_image = Image.fromarray(background_frame)
|
| 44 |
+
processed_image = process(pil_image, background_image, fast_mode)
|
| 45 |
+
else:
|
| 46 |
+
processed_image = pil_image # Default to original image if no background is selected
|
| 47 |
+
return np.array(processed_image), bg_frame_index
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"Error processing frame: {e}")
|
| 50 |
+
return frame, bg_frame_index
|
| 51 |
|
| 52 |
@spaces.GPU
|
| 53 |
+
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down", fast_mode=True, max_workers=6):
|
| 54 |
+
try:
|
| 55 |
+
start_time = time.time() # Start the timer
|
| 56 |
+
video = mp.VideoFileClip(vid)
|
| 57 |
+
if fps == 0:
|
| 58 |
+
fps = video.fps
|
| 59 |
+
|
| 60 |
+
audio = video.audio
|
| 61 |
+
frames = list(video.iter_frames(fps=fps))
|
| 62 |
+
|
| 63 |
+
processed_frames = []
|
| 64 |
+
yield gr.update(visible=True), gr.update(visible=False), f"Processing started... Elapsed time: 0 seconds"
|
| 65 |
+
|
| 66 |
+
if bg_type == "Video":
|
| 67 |
+
background_video = mp.VideoFileClip(bg_video)
|
| 68 |
+
if background_video.duration < video.duration:
|
| 69 |
+
if video_handling == "slow_down":
|
| 70 |
+
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
|
| 71 |
+
else: # video_handling == "loop"
|
| 72 |
+
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
|
| 73 |
+
background_frames = list(background_video.iter_frames(fps=fps))
|
| 74 |
+
else:
|
| 75 |
+
background_frames = None
|
| 76 |
+
|
| 77 |
+
bg_frame_index = 0 # Initialize background frame index
|
| 78 |
|
| 79 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 80 |
+
futures = [executor.submit(process_frame, frames[i], bg_type, bg_image, fast_mode, bg_frame_index, background_frames, color) for i in range(len(frames))]
|
| 81 |
+
for future in futures:
|
| 82 |
+
result, bg_frame_index = future.result()
|
| 83 |
+
processed_frames.append(result)
|
| 84 |
+
elapsed_time = time.time() - start_time
|
| 85 |
+
yield result, None, f"Processing frame {len(processed_frames)}... Elapsed time: {elapsed_time:.2f} seconds"
|
| 86 |
+
|
| 87 |
+
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
| 88 |
+
processed_video = processed_video.set_audio(audio)
|
| 89 |
+
|
| 90 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
| 91 |
+
temp_filepath = temp_file.name
|
| 92 |
+
processed_video.write_videofile(temp_filepath, codec="libx264")
|
| 93 |
+
|
| 94 |
elapsed_time = time.time() - start_time
|
| 95 |
+
yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
|
| 96 |
+
yield processed_frames[-1], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
|
| 97 |
|
| 98 |
+
except Exception as e:
|
| 99 |
+
print(f"Error: {e}")
|
| 100 |
+
elapsed_time = time.time() - start_time
|
| 101 |
+
yield gr.update(visible=False), gr.update(visible=True), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"
|
| 102 |
+
yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
def process(image, bg, fast_mode=False):
|
| 105 |
image_size = image.size
|