Spaces:
Sleeping
Sleeping
create the app.py file
Browse files
app.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
model_names = [
|
| 5 |
+
"distilgpt2",
|
| 6 |
+
"gpt2",
|
| 7 |
+
]
|
| 8 |
+
|
| 9 |
+
# --- minimal caching so the model isn't reloaded every click ---
|
| 10 |
+
_pipe_cache = {}
|
| 11 |
+
|
| 12 |
+
def _get_pipe(model_name):
|
| 13 |
+
if model_name not in _pipe_cache:
|
| 14 |
+
tok = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
+
_pipe_cache[model_name] = pipeline(
|
| 16 |
+
"text-generation",
|
| 17 |
+
model=model_name,
|
| 18 |
+
tokenizer=tok,
|
| 19 |
+
device_map="auto",
|
| 20 |
+
torch_dtype="auto",
|
| 21 |
+
)
|
| 22 |
+
return _pipe_cache[model_name]
|
| 23 |
+
# ---------------------------------------------------------------
|
| 24 |
+
|
| 25 |
+
def generate_with_choice(prompt, model_name):
|
| 26 |
+
pipe = _get_pipe(model_name)
|
| 27 |
+
out = pipe(
|
| 28 |
+
prompt,
|
| 29 |
+
max_new_tokens=50,
|
| 30 |
+
do_sample=True,
|
| 31 |
+
return_full_text=False
|
| 32 |
+
)
|
| 33 |
+
return out[0]["generated_text"]
|
| 34 |
+
|
| 35 |
+
demo2 = gr.Interface(
|
| 36 |
+
fn=generate_with_choice,
|
| 37 |
+
inputs=[
|
| 38 |
+
gr.Textbox(lines=4, label="Enter Prompt"),
|
| 39 |
+
gr.Dropdown(model_names, label="Choose Model"),
|
| 40 |
+
],
|
| 41 |
+
outputs=gr.Textbox(lines=5, label="Output"),
|
| 42 |
+
flagging_mode="never",
|
| 43 |
+
title="Model Chooser Demo",
|
| 44 |
+
description="Pick a model and generate text on the fly!",
|
| 45 |
+
theme="soft",
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
demo2.queue().launch(share=True)
|