Spaces:
Runtime error
Runtime error
import lancedb | |
import os | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
from FlagEmbedding import FlagReranker | |
db = lancedb.connect(".lancedb") | |
TABLE = db.open_table(os.getenv("TABLE_NAME")) | |
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector") | |
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text") | |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) | |
retriever = SentenceTransformer(os.getenv("EMB_MODEL")) | |
reranker = FlagReranker(os.getenv("RERANKER_MODEL", 'BAAI/bge-reranker-large'), use_fp16=True) | |
def retrieve(query, k): | |
query_vec = retriever.encode(query) | |
try: | |
documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list() | |
documents = [doc[TEXT_COLUMN] for doc in documents] | |
return documents | |
except Exception as e: | |
raise gr.Error(str(e)) | |
def rerank(documents, query, k): | |
try: | |
query_pairs = [[query, doc] for doc in documents] | |
scores = reranker.compute_score(query_pairs) | |
scored_documents = list(zip(documents, scores)) | |
scored_documents.sort(key=lambda x: x[1], reverse=True) | |
top_k_documents = [doc for doc, _ in scored_documents[:k]] | |
return top_k_documents | |
except Exception as e: | |
raise gr.Error(str(e)) | |