Upload 3 files
Browse files- app.yaml +0 -0
- main.py +136 -0
- requirements.txt +5 -0
app.yaml
ADDED
File without changes
|
main.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import os
|
3 |
+
import tensorflow as tf
|
4 |
+
import tensorflow_hub as hub
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
+
|
10 |
+
# Define constants or parameters
|
11 |
+
min_kick_angle = 30 # Minimum angle for the leg to be considered a kick
|
12 |
+
frame_window = 10 # Number of frames to consider for action recognition
|
13 |
+
kick_counter = 0
|
14 |
+
highest_kick_frame = -1 # Initialize the frame number of the highest kick
|
15 |
+
highest_kick_knee = None # Initialize coordinates of the knee for the highest kick
|
16 |
+
highest_kick_hip = None # Initialize coordinates of the hip for the highest kick
|
17 |
+
|
18 |
+
# Initialize variables for action recognition
|
19 |
+
frame_buffer = []
|
20 |
+
|
21 |
+
# Load the MoveNet model for pose estimation from TensorFlow Hub
|
22 |
+
model = hub.load("https://tfhub.dev/google/movenet/singlepose/thunder/4")
|
23 |
+
pose_net = model.signatures['serving_default']
|
24 |
+
|
25 |
+
# Define upload folder for video files
|
26 |
+
UPLOAD_FOLDER = 'uploads'
|
27 |
+
ALLOWED_EXTENSIONS = {'mp4'}
|
28 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
29 |
+
|
30 |
+
# Function to detect front kick based on keypoints
|
31 |
+
def detect_front_kick_func(keypoints, frame_number):
|
32 |
+
keypoints_array = keypoints[0] # Get the NumPy array from the list
|
33 |
+
|
34 |
+
right_hip = keypoints_array[0, 0, 8, :] # Right hip is at index 8
|
35 |
+
right_knee = keypoints_array[0, 0, 9, :] # Right knee is at index 9
|
36 |
+
|
37 |
+
# print(right_hip, ' ', right_knee)
|
38 |
+
if right_knee[2] < 0.4 and right_hip[2] < 0.4:
|
39 |
+
return False, -1, None, None
|
40 |
+
|
41 |
+
angle = np.arctan2(right_knee[1] - right_hip[1], right_knee[0] - right_hip[0]) * 180 / np.pi
|
42 |
+
|
43 |
+
if angle > min_kick_angle:
|
44 |
+
return True, frame_number, right_knee, right_hip
|
45 |
+
else:
|
46 |
+
return False, -1, None, None
|
47 |
+
|
48 |
+
def allowed_file(filename):
|
49 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
50 |
+
|
51 |
+
|
52 |
+
@app.route('/detect_front_kick', methods=['POST'])
|
53 |
+
def detect_front_kick():
|
54 |
+
try:
|
55 |
+
# Check if the 'video' field is in the request
|
56 |
+
if 'video' not in request.files:
|
57 |
+
return jsonify({'error': 'No video file provided'})
|
58 |
+
|
59 |
+
video_file = request.files['video']
|
60 |
+
|
61 |
+
# Check if the file has the allowed extension
|
62 |
+
if not allowed_file(video_file.filename):
|
63 |
+
return jsonify({'error': 'Invalid file format. Only MP4 videos are allowed.'})
|
64 |
+
|
65 |
+
# Save the video file to the upload folder with a secure name
|
66 |
+
video_filename = (video_file.filename)
|
67 |
+
video_filepath = os.path.join(app.config['UPLOAD_FOLDER'], video_filename)
|
68 |
+
video_file.save(video_filepath)
|
69 |
+
|
70 |
+
# Open the video file for processing
|
71 |
+
cap = cv2.VideoCapture(video_filepath)
|
72 |
+
|
73 |
+
# Check if the video file was opened successfully
|
74 |
+
if not cap.isOpened():
|
75 |
+
return jsonify({'error': 'Failed to open video file.'})
|
76 |
+
|
77 |
+
frame_number = 0 # Initialize frame number
|
78 |
+
|
79 |
+
while True:
|
80 |
+
ret, frame = cap.read()
|
81 |
+
|
82 |
+
if not ret:
|
83 |
+
break
|
84 |
+
|
85 |
+
# Preprocess the frame (resize, normalize, denoise, etc.)
|
86 |
+
|
87 |
+
# Perform pose estimation using MoveNet
|
88 |
+
resized_frame = cv2.resize(frame, (256, 256))
|
89 |
+
image = tf.constant(resized_frame, dtype=tf.int32)
|
90 |
+
image = tf.expand_dims(image, axis=0)
|
91 |
+
|
92 |
+
# Run model inference
|
93 |
+
outputs = pose_net(image)
|
94 |
+
keypoints = outputs['output_0'].numpy()
|
95 |
+
|
96 |
+
# Append the keypoints to the frame buffer
|
97 |
+
frame_buffer.append(keypoints)
|
98 |
+
|
99 |
+
# Maintain a sliding window of frames for action recognition
|
100 |
+
if len(frame_buffer) > frame_window:
|
101 |
+
frame_buffer.pop(0)
|
102 |
+
|
103 |
+
# Perform action recognition using the frame buffer
|
104 |
+
if len(frame_buffer) == frame_window:
|
105 |
+
is_kick, frame_with_kick, knee, hip = detect_front_kick_func(frame_buffer, frame_number)
|
106 |
+
|
107 |
+
if is_kick:
|
108 |
+
kick_counter += 1
|
109 |
+
if frame_with_kick > highest_kick_frame:
|
110 |
+
highest_kick_frame = frame_with_kick
|
111 |
+
highest_kick_knee = knee
|
112 |
+
highest_kick_hip = hip
|
113 |
+
|
114 |
+
frame_number += 1
|
115 |
+
|
116 |
+
cap.release()
|
117 |
+
|
118 |
+
response_data = {
|
119 |
+
'kick_counter': kick_counter,
|
120 |
+
'highest_kick_frame': highest_kick_frame,
|
121 |
+
'highest_kick_knee': highest_kick_knee.tolist() if highest_kick_knee is not None else None,
|
122 |
+
'highest_kick_hip': highest_kick_hip.tolist() if highest_kick_hip is not None else None,
|
123 |
+
}
|
124 |
+
|
125 |
+
return jsonify(response_data)
|
126 |
+
|
127 |
+
except Exception as e:
|
128 |
+
return jsonify({'error': str(e)})
|
129 |
+
|
130 |
+
@app.route('/home', methods=['GET'])
|
131 |
+
def homie():
|
132 |
+
return jsonify({"message":"none"})
|
133 |
+
|
134 |
+
|
135 |
+
if __name__ == '__main__':
|
136 |
+
app.run(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask==2.1.1
|
2 |
+
numpy==1.21.2
|
3 |
+
opencv-python==4.5.3.56
|
4 |
+
tensorflow==2.5.1
|
5 |
+
tensorflow-hub==0.12.0
|