wade001 commited on
Commit
879145e
·
1 Parent(s): 74d7f32

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +202 -0
app.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from scipy.signal import butter, lfilter, cheby1
5
+ import plotly.graph_objects as go
6
+ import matplotlib.pyplot as plt
7
+
8
+ # Function to apply FFT
9
+ def apply_fft(data, sampling_rate):
10
+ n = len(data)
11
+ fft_result = np.fft.fft(data)
12
+ freq = np.fft.fftfreq(n, 1 / sampling_rate)
13
+
14
+
15
+ return freq, np.abs(fft_result)
16
+ # Function to apply Wiener filter
17
+ def apply_wiener_filter(noisy_signal, noise_level):
18
+ signal_power = np.mean(noisy_signal ** 2)
19
+ noise_power = noise_level ** 2
20
+ transfer_function = 1 - noise_power / signal_power
21
+ filtered_signal = noisy_signal * transfer_function
22
+ return filtered_signal
23
+
24
+ # Function to apply IIR filter
25
+ def apply_iir_filter(data, cutoff_freq, sampling_rate, filter_type='butter'):
26
+ nyquist = 0.5 * sampling_rate
27
+ normal_cutoff = cutoff_freq / nyquist
28
+
29
+ if filter_type == 'butter':
30
+ b, a = butter(4, normal_cutoff, btype='low', analog=False)
31
+ elif filter_type == 'chebyshev':
32
+ b, a = cheby1(4, 0.5, normal_cutoff, btype='low', analog=False)
33
+ else:
34
+ raise ValueError("Invalid filter type")
35
+
36
+ filtered_data = lfilter(b, a, data)
37
+ return filtered_data
38
+
39
+ # Function to classify motor signal
40
+ def classify_motor_signal(data, sampling_rate, noise_level):
41
+ _, fft_result = apply_fft(data, sampling_rate)
42
+ num_components = 5
43
+ threshold_multiplier = 1.5
44
+
45
+ # Calculate mean amplitude of the first few frequency components
46
+ first_few_amplitudes = np.abs(fft_result[1:num_components + 1])
47
+ mean_first_few_amplitude = np.mean(first_few_amplitudes)
48
+
49
+ # Calculate mean amplitude of the entire FFT spectrum
50
+ mean_total_amplitude = np.mean(np.abs(fft_result))
51
+
52
+ # Calculate the ratio of mean_first_few_amplitude to mean_total_amplitude
53
+ ratio = mean_first_few_amplitude / mean_total_amplitude
54
+
55
+ # Set the threshold based on the ratio
56
+ threshold = threshold_multiplier
57
+
58
+ if ratio > threshold:
59
+ return "Faulty Motor: High-frequency components detected."
60
+ else:
61
+ return "Healthy Motor: No significant fault detected."
62
+
63
+ # Function to generate power spectrum
64
+ def generate_power_spectrum(signal, sampling_rate):
65
+ n = len(signal)
66
+ frequencies = np.fft.fftfreq(n, d=1/sampling_rate)
67
+ spectrum = np.abs(np.fft.fft(signal))
68
+ return frequencies, spectrum
69
+
70
+ # Function to identify peak in the power spectrum
71
+ def identify_peak(frequencies, spectrum):
72
+ peak_frequency = frequencies[np.argmax(spectrum)]
73
+ peak_amplitude = np.max(spectrum)
74
+ return peak_frequency, peak_amplitude
75
+ def calculate_mean_variance(data):
76
+ mean_value = np.mean(data)
77
+ variance_value = np.var(data)
78
+ return mean_value, variance_value
79
+
80
+ def apply_tukey_test(data, threshold=1.5):
81
+ q75, q25 = np.percentile(data, [75, 25])
82
+ iqr = q75 - q25
83
+ lower_bound = q25 - threshold * iqr
84
+ upper_bound = q75 + threshold * iqr
85
+ outliers = (data < lower_bound) | (data > upper_bound)
86
+ return outliers
87
+
88
+ # Function to classify motor based on mean, variance, and Tukey test
89
+ def classify_motor_stats(data):
90
+ mean_value, variance_value = calculate_mean_variance(data)
91
+ outliers = apply_tukey_test(data)
92
+
93
+ if np.any(outliers):
94
+ return "Faulty Motor: Outliers detected."
95
+ else:
96
+ return "Healthy Motor: No significant outliers detected."
97
+
98
+
99
+ # Streamlit app
100
+ def main():
101
+ st.title("Motor Signal Analysis App")
102
+
103
+ # Define tabs for different scenarios
104
+ tab_names = ["No Load - Healthy", "No Load - Faulty", "Full Load - Healthy", "Full Load - Faulty"]
105
+ selected_tab = st.radio("Select Scenario", tab_names)
106
+
107
+ # Set default values
108
+ default_noise_level = 0.1
109
+ default_cutoff_freq = 50
110
+
111
+ # Upload CSV file
112
+ uploaded_file = st.file_uploader(f"Upload CSV for {selected_tab}", type=["csv"])
113
+
114
+ if uploaded_file is not None:
115
+ # Load data
116
+ df = pd.read_csv(uploaded_file)
117
+ data_column = df.columns[0] # Assume data is in the first column
118
+ data = df[data_column].values
119
+
120
+ # Display original signal graph
121
+ st.subheader("Original Signal")
122
+ original_trace = go.Scatter(x=df.index, y=df[data_column], mode='lines', name='Original Signal')
123
+ st.plotly_chart([original_trace])
124
+
125
+ # Sampling rate
126
+ sampling_rate = st.number_input("Enter the sampling rate", min_value=1, value=1000)
127
+
128
+ # Apply FFT
129
+ freq, fft_result = apply_fft(data, sampling_rate)
130
+
131
+ # Plot FFT
132
+ st.subheader("FFT Analysis")
133
+ fft_trace = go.Scatter(x=np.abs(freq), y=np.abs(fft_result), mode='lines', name='FFT Result')
134
+
135
+ # Set layout parameters
136
+ layout_fft = go.Layout(
137
+ title='FFT Result Analysis',
138
+ xaxis=dict(title='Frequency (Hz)', range=[0, 200]), # Set the range up to 200 Hz
139
+ yaxis=dict(title='Amplitude',range=[0,20000]), # Remove or comment out 'autorange' setting
140
+ )
141
+
142
+ st.plotly_chart(go.Figure(data=[fft_trace], layout=layout_fft))
143
+
144
+ # Apply selected filter
145
+ apply_filter_option = st.checkbox("Apply Filter")
146
+ if apply_filter_option:
147
+ # Cutoff frequency for IIR filter
148
+ cutoff_freq = st.number_input("Enter the cutoff frequency", min_value=1, value=default_cutoff_freq)
149
+
150
+ # Filter type for IIR filter
151
+ filter_type = st.selectbox("Select Filter Type", ['butter', 'chebyshev', 'wiener'], index=0)
152
+
153
+ # Apply selected filter
154
+ if filter_type == 'butter':
155
+ filtered_data = apply_iir_filter(fft_result, cutoff_freq, sampling_rate, filter_type='butter')
156
+ elif filter_type == 'chebyshev':
157
+ filtered_data = apply_iir_filter(fft_result, cutoff_freq, sampling_rate, filter_type='chebyshev')
158
+ elif filter_type == 'wiener':
159
+ filtered_data = apply_wiener_filter(fft_result, default_noise_level)
160
+
161
+ # Generate power spectrum after applying filter
162
+ frequencies_spectrum, spectrum = generate_power_spectrum(filtered_data, sampling_rate)
163
+
164
+ # Identify peak in power spectrum
165
+ peak_frequency, peak_amplitude = identify_peak(frequencies_spectrum, spectrum)
166
+
167
+ # Plot the results using Plotly
168
+ st.subheader(f"{filter_type.capitalize()} Filtered Signal")
169
+ filtered_trace = go.Scatter(x=np.abs(freq), y=np.abs(filtered_data), mode='lines',
170
+ name=f'{filter_type.capitalize()} Filtered Signal')
171
+ layout_filtered = go.Layout(
172
+ title='Filtered signal',
173
+ xaxis=dict(title='Frequency (Hz)',range=[0,200]),
174
+ yaxis=dict(title='Amplitude',range=[0,20000]), # Remove or comment out 'autorange' setting
175
+ )
176
+
177
+ st.plotly_chart(go.Figure(data=[filtered_trace], layout=layout_filtered))
178
+
179
+
180
+ st.subheader(f"Power Spectrum after {filter_type.capitalize()} Filter")
181
+ power_spectrum_trace = go.Scatter(x=frequencies_spectrum, y=np.abs(spectrum), mode='lines',
182
+ name=f'Power Spectrum ({filter_type.capitalize()} Filter)')
183
+
184
+ # Set layout parameters for power spectrum plot
185
+ layout_power_spectrum = go.Layout(
186
+ title=f'Power Spectrum after {filter_type.capitalize()} Filter',
187
+ xaxis=dict(title='Frequency (Hz)'),
188
+ yaxis=dict(title='Amplitude'),
189
+ )
190
+
191
+ st.plotly_chart(go.Figure(data=[power_spectrum_trace], layout=layout_power_spectrum))
192
+
193
+ # Display peak frequency and amplitude
194
+ st.subheader("Peak in Power Spectrum")
195
+ st.write(f"Frequency: {peak_frequency} Hz, Amplitude: {peak_amplitude}")
196
+
197
+ motor_status_stats = classify_motor_stats(data=data)
198
+ st.info(f"Motor Status (Mean, Variance, Tukey Test): {motor_status_stats}")
199
+
200
+ # Run the app
201
+ if __name__ == "__main__":
202
+ main()