wade001's picture
Update app.py
635855f
import streamlit as st
import pandas as pd
import numpy as np
from scipy.signal import butter, lfilter, cheby1
import plotly.graph_objects as go
import matplotlib.pyplot as plt
# Function to apply FFT
def apply_fft(data, sampling_rate):
n = len(data)
fft_result = np.fft.fft(data)
freq = np.fft.fftfreq(n, 1 / sampling_rate)
return freq, np.abs(fft_result)
# Function to apply Wiener filter
def apply_wiener_filter(noisy_signal, noise_level):
signal_power = np.mean(noisy_signal ** 2)
noise_power = noise_level ** 2
transfer_function = 1 - noise_power / signal_power
filtered_signal = noisy_signal * transfer_function
return filtered_signal
# Function to apply IIR filter
def apply_iir_filter(data, cutoff_freq, sampling_rate, filter_type='butter'):
nyquist = 0.5 * sampling_rate
normal_cutoff = cutoff_freq / nyquist
if filter_type == 'butter':
b, a = butter(4, normal_cutoff, btype='low', analog=False)
elif filter_type == 'chebyshev':
b, a = cheby1(4, 0.5, normal_cutoff, btype='low', analog=False)
else:
raise ValueError("Invalid filter type")
filtered_data = lfilter(b, a, data)
return filtered_data
# Function to classify motor signal
def classify_motor_signal(data, sampling_rate, noise_level):
_, fft_result = apply_fft(data, sampling_rate)
num_components = 5
threshold_multiplier = 1.5
# Calculate mean amplitude of the first few frequency components
first_few_amplitudes = np.abs(fft_result[1:num_components + 1])
mean_first_few_amplitude = np.mean(first_few_amplitudes)
# Calculate mean amplitude of the entire FFT spectrum
mean_total_amplitude = np.mean(np.abs(fft_result))
# Calculate the ratio of mean_first_few_amplitude to mean_total_amplitude
ratio = mean_first_few_amplitude / mean_total_amplitude
# Set the threshold based on the ratio
threshold = threshold_multiplier
if ratio > threshold:
return "Faulty Motor: High-frequency components detected."
else:
return "Healthy Motor: No significant fault detected."
# Function to generate power spectrum
def generate_power_spectrum(signal, sampling_rate):
n = len(signal)
frequencies = np.fft.fftfreq(n, d=1/sampling_rate)
spectrum = np.abs(np.fft.fft(signal))
return frequencies, spectrum
# Function to identify peak in the power spectrum
def identify_peak(frequencies, spectrum):
peak_frequency = frequencies[np.argmax(spectrum)]
peak_amplitude = np.max(spectrum)
return peak_frequency, peak_amplitude
def calculate_mean_variance(data):
mean_value = np.mean(data)
variance_value = np.var(data)
return mean_value, variance_value
def apply_tukey_test(data, threshold=1.5):
q75, q25 = np.percentile(data, [75, 25])
iqr = q75 - q25
lower_bound = q25 - threshold * iqr
upper_bound = q75 + threshold * iqr
outliers = (data < lower_bound) | (data > upper_bound)
return outliers
# Function to classify motor based on mean, variance, and Tukey test
def classify_motor_stats(data):
mean_value, variance_value = calculate_mean_variance(data)
outliers = apply_tukey_test(data)
if np.any(outliers):
return "Faulty Motor: Outliers detected."
else:
return "Healthy Motor: No significant outliers detected."
# Streamlit app
def main():
st.title("Motor Signal Analysis App")
# Define tabs for different scenarios
tab_names = ["No Load - Healthy", "No Load - Faulty", "Full Load - Healthy", "Full Load - Faulty"]
selected_tab = st.radio("Select Scenario", tab_names)
# Set default values
default_noise_level = 0.1
default_cutoff_freq = 50
# Upload CSV file
uploaded_file = st.file_uploader(f"Upload CSV for {selected_tab}", type=["csv"])
if uploaded_file is not None:
# Load data
df = pd.read_csv(uploaded_file)
data_column = df.columns[0] # Assume data is in the first column
data = df[data_column].values
# Display original signal graph
st.subheader("Original Signal")
original_trace = go.Scatter(x=df.index, y=df[data_column], mode='lines', name='Original Signal')
st.plotly_chart([original_trace])
# Sampling rate
sampling_rate = st.number_input("Enter the sampling rate", min_value=1, value=1000)
# Apply FFT
freq, fft_result = apply_fft(data, sampling_rate)
# Plot FFT
st.subheader("FFT Analysis")
fft_trace = go.Scatter(x=np.abs(freq), y=np.abs(fft_result), mode='lines', name='FFT Result')
# Set layout parameters
layout_fft = go.Layout(
title='FFT Result Analysis',
xaxis=dict(title='Frequency (Hz)', range=[0, 200]), # Set the range up to 200 Hz
yaxis=dict(title='Amplitude',range=[0,20000]), # Remove or comment out 'autorange' setting
)
st.plotly_chart(go.Figure(data=[fft_trace], layout=layout_fft))
# Apply selected filter
apply_filter_option = st.checkbox("Apply Filter")
if apply_filter_option:
# Cutoff frequency for IIR filter
cutoff_freq = st.number_input("Enter the cutoff frequency", min_value=1, value=default_cutoff_freq)
# Filter type for IIR filter
filter_type = st.selectbox("Select Filter Type", ['butter', 'chebyshev', 'wiener'], index=0)
# Apply selected filter
if filter_type == 'butter':
filtered_data = apply_iir_filter(fft_result, cutoff_freq, sampling_rate, filter_type='butter')
elif filter_type == 'chebyshev':
filtered_data = apply_iir_filter(fft_result, cutoff_freq, sampling_rate, filter_type='chebyshev')
elif filter_type == 'wiener':
filtered_data = apply_wiener_filter(fft_result, default_noise_level)
# Generate power spectrum after applying filter
frequencies_spectrum, spectrum = generate_power_spectrum(filtered_data, sampling_rate)
# Identify peak in power spectrum
peak_frequency, peak_amplitude = identify_peak(frequencies_spectrum, spectrum)
# Plot the results using Plotly
st.subheader(f"{filter_type.capitalize()} Filtered Signal")
filtered_trace = go.Scatter(x=np.abs(freq), y=np.abs(filtered_data), mode='lines',
name=f'{filter_type.capitalize()} Filtered Signal')
layout_filtered = go.Layout(
title='Filtered signal',
xaxis=dict(title='Frequency (Hz)',range=[0,200]),
yaxis=dict(title='Amplitude',range=[0,20000]), # Remove or comment out 'autorange' setting
)
st.plotly_chart(go.Figure(data=[filtered_trace], layout=layout_filtered))
st.subheader(f"Power Spectrum after {filter_type.capitalize()} Filter")
power_spectrum_trace = go.Scatter(x=frequencies_spectrum, y=np.abs(spectrum), mode='lines',
name=f'Power Spectrum ({filter_type.capitalize()} Filter)')
# Set layout parameters for power spectrum plot
layout_power_spectrum = go.Layout(
title=f'Power Spectrum after {filter_type.capitalize()} Filter',
xaxis=dict(title='Frequency (Hz)'),
yaxis=dict(title='Amplitude'),
)
st.plotly_chart(go.Figure(data=[power_spectrum_trace], layout=layout_power_spectrum))
# Display peak frequency and amplitude
st.subheader("Peak in Power Spectrum")
st.write(f"Frequency: {peak_frequency} Hz, Amplitude: {peak_amplitude}")
motor_status_stats = classify_motor_stats(data=data)
st.info(f"Motor Status (Mean, Variance, Tukey Test): {motor_status_stats}")
# Run the app
if __name__ == "__main__":
main()