|
|
|
|
|
|
|
|
|
|
|
from typing import Tuple |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from detectron2.config import configurable |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head |
|
from detectron2.modeling.backbone import Backbone |
|
from detectron2.modeling.postprocessing import sem_seg_postprocess |
|
from detectron2.structures import Boxes, ImageList, Instances, BitMasks |
|
from detectron2.utils.memory import retry_if_cuda_oom |
|
|
|
from .modeling.criterion import SetCriterion |
|
from .modeling.matcher import HungarianMatcher |
|
from einops import rearrange |
|
from .modeling.transformer_decoder.text_transformer import TextTransformer |
|
from .modeling.transformer_decoder.oneformer_transformer_decoder import MLP |
|
from oneformer.data.tokenizer import SimpleTokenizer, Tokenize |
|
|
|
@META_ARCH_REGISTRY.register() |
|
class OneFormer(nn.Module): |
|
""" |
|
Main class for mask classification semantic segmentation architectures. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
*, |
|
backbone: Backbone, |
|
sem_seg_head: nn.Module, |
|
task_mlp: nn.Module, |
|
text_encoder: nn.Module, |
|
text_projector: nn.Module, |
|
criterion: nn.Module, |
|
prompt_ctx: nn.Embedding, |
|
num_queries: int, |
|
object_mask_threshold: float, |
|
overlap_threshold: float, |
|
metadata, |
|
size_divisibility: int, |
|
sem_seg_postprocess_before_inference: bool, |
|
pixel_mean: Tuple[float], |
|
pixel_std: Tuple[float], |
|
|
|
semantic_on: bool, |
|
panoptic_on: bool, |
|
instance_on: bool, |
|
detection_on: bool, |
|
test_topk_per_image: int, |
|
task_seq_len: int, |
|
max_seq_len: int, |
|
is_demo: bool, |
|
): |
|
""" |
|
Args: |
|
backbone: a backbone module, must follow detectron2's backbone interface |
|
sem_seg_head: a module that predicts semantic segmentation from backbone features |
|
criterion: a module that defines the loss |
|
num_queries: int, number of queries |
|
object_mask_threshold: float, threshold to filter query based on classification score |
|
for panoptic segmentation inference |
|
overlap_threshold: overlap threshold used in general inference for panoptic segmentation |
|
metadata: dataset meta, get `thing` and `stuff` category names for panoptic |
|
segmentation inference |
|
size_divisibility: Some backbones require the input height and width to be divisible by a |
|
specific integer. We can use this to override such requirement. |
|
sem_seg_postprocess_before_inference: whether to resize the prediction back |
|
to original input size before semantic segmentation inference or after. |
|
For high-resolution dataset like Mapillary, resizing predictions before |
|
inference will cause OOM error. |
|
pixel_mean, pixel_std: list or tuple with #channels element, representing |
|
the per-channel mean and std to be used to normalize the input image |
|
semantic_on: bool, whether to output semantic segmentation prediction |
|
instance_on: bool, whether to output instance segmentation prediction |
|
panoptic_on: bool, whether to output panoptic segmentation prediction |
|
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image |
|
""" |
|
super().__init__() |
|
self.backbone = backbone |
|
self.sem_seg_head = sem_seg_head |
|
self.task_mlp = task_mlp |
|
self.text_encoder = text_encoder |
|
self.text_projector = text_projector |
|
self.prompt_ctx = prompt_ctx |
|
self.criterion = criterion |
|
self.num_queries = num_queries |
|
self.overlap_threshold = overlap_threshold |
|
self.object_mask_threshold = object_mask_threshold |
|
self.metadata = metadata |
|
if size_divisibility < 0: |
|
|
|
size_divisibility = self.backbone.size_divisibility |
|
self.size_divisibility = size_divisibility |
|
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference |
|
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) |
|
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) |
|
|
|
|
|
self.semantic_on = semantic_on |
|
self.instance_on = instance_on |
|
self.panoptic_on = panoptic_on |
|
self.detection_on = detection_on |
|
self.test_topk_per_image = test_topk_per_image |
|
|
|
self.text_tokenizer = Tokenize(SimpleTokenizer(), max_seq_len=max_seq_len) |
|
self.task_tokenizer = Tokenize(SimpleTokenizer(), max_seq_len=task_seq_len) |
|
self.is_demo = is_demo |
|
|
|
self.thing_indices = [k for k in self.metadata.thing_dataset_id_to_contiguous_id.keys()] |
|
|
|
if not self.semantic_on: |
|
assert self.sem_seg_postprocess_before_inference |
|
|
|
@classmethod |
|
def from_config(cls, cfg): |
|
backbone = build_backbone(cfg) |
|
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) |
|
|
|
if cfg.MODEL.IS_TRAIN: |
|
text_encoder = TextTransformer(context_length=cfg.MODEL.TEXT_ENCODER.CONTEXT_LENGTH, |
|
width=cfg.MODEL.TEXT_ENCODER.WIDTH, |
|
layers=cfg.MODEL.TEXT_ENCODER.NUM_LAYERS, |
|
vocab_size=cfg.MODEL.TEXT_ENCODER.VOCAB_SIZE) |
|
text_projector = MLP(text_encoder.width, cfg.MODEL.ONE_FORMER.HIDDEN_DIM, |
|
cfg.MODEL.ONE_FORMER.HIDDEN_DIM, cfg.MODEL.TEXT_ENCODER.PROJ_NUM_LAYERS) |
|
if cfg.MODEL.TEXT_ENCODER.N_CTX > 0: |
|
prompt_ctx = nn.Embedding(cfg.MODEL.TEXT_ENCODER.N_CTX, cfg.MODEL.TEXT_ENCODER.WIDTH) |
|
else: |
|
prompt_ctx = None |
|
else: |
|
text_encoder = None |
|
text_projector = None |
|
prompt_ctx = None |
|
|
|
task_mlp = MLP(cfg.INPUT.TASK_SEQ_LEN, cfg.MODEL.ONE_FORMER.HIDDEN_DIM, |
|
cfg.MODEL.ONE_FORMER.HIDDEN_DIM, 2) |
|
|
|
|
|
deep_supervision = cfg.MODEL.ONE_FORMER.DEEP_SUPERVISION |
|
no_object_weight = cfg.MODEL.ONE_FORMER.NO_OBJECT_WEIGHT |
|
|
|
|
|
class_weight = cfg.MODEL.ONE_FORMER.CLASS_WEIGHT |
|
dice_weight = cfg.MODEL.ONE_FORMER.DICE_WEIGHT |
|
mask_weight = cfg.MODEL.ONE_FORMER.MASK_WEIGHT |
|
contrastive_weight = cfg.MODEL.ONE_FORMER.CONTRASTIVE_WEIGHT |
|
|
|
|
|
matcher = HungarianMatcher( |
|
cost_class=class_weight, |
|
cost_mask=mask_weight, |
|
cost_dice=dice_weight, |
|
num_points=cfg.MODEL.ONE_FORMER.TRAIN_NUM_POINTS, |
|
) |
|
|
|
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, |
|
"loss_dice": dice_weight, "loss_contrastive": contrastive_weight} |
|
|
|
|
|
if deep_supervision: |
|
dec_layers = cfg.MODEL.ONE_FORMER.DEC_LAYERS |
|
aux_weight_dict = {} |
|
for i in range(dec_layers - 1): |
|
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) |
|
weight_dict.update(aux_weight_dict) |
|
|
|
losses = ["labels", "masks", "contrastive"] |
|
|
|
criterion = SetCriterion( |
|
sem_seg_head.num_classes, |
|
matcher=matcher, |
|
weight_dict=weight_dict, |
|
eos_coef=no_object_weight, |
|
contrast_temperature=cfg.MODEL.ONE_FORMER.CONTRASTIVE_TEMPERATURE, |
|
losses=losses, |
|
num_points=cfg.MODEL.ONE_FORMER.TRAIN_NUM_POINTS, |
|
oversample_ratio=cfg.MODEL.ONE_FORMER.OVERSAMPLE_RATIO, |
|
importance_sample_ratio=cfg.MODEL.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO, |
|
) |
|
|
|
return { |
|
"backbone": backbone, |
|
"sem_seg_head": sem_seg_head, |
|
"task_mlp": task_mlp, |
|
"prompt_ctx": prompt_ctx, |
|
"text_encoder": text_encoder, |
|
"text_projector": text_projector, |
|
"criterion": criterion, |
|
"num_queries": cfg.MODEL.ONE_FORMER.NUM_OBJECT_QUERIES, |
|
"object_mask_threshold": cfg.MODEL.TEST.OBJECT_MASK_THRESHOLD, |
|
"overlap_threshold": cfg.MODEL.TEST.OVERLAP_THRESHOLD, |
|
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), |
|
"size_divisibility": cfg.MODEL.ONE_FORMER.SIZE_DIVISIBILITY, |
|
"sem_seg_postprocess_before_inference": ( |
|
cfg.MODEL.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE |
|
or cfg.MODEL.TEST.PANOPTIC_ON |
|
or cfg.MODEL.TEST.INSTANCE_ON |
|
), |
|
"pixel_mean": cfg.MODEL.PIXEL_MEAN, |
|
"pixel_std": cfg.MODEL.PIXEL_STD, |
|
|
|
"semantic_on": cfg.MODEL.TEST.SEMANTIC_ON, |
|
"instance_on": cfg.MODEL.TEST.INSTANCE_ON, |
|
"panoptic_on": cfg.MODEL.TEST.PANOPTIC_ON, |
|
"detection_on": cfg.MODEL.TEST.DETECTION_ON, |
|
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, |
|
"task_seq_len": cfg.INPUT.TASK_SEQ_LEN, |
|
"max_seq_len": cfg.INPUT.MAX_SEQ_LEN, |
|
"is_demo": cfg.MODEL.IS_DEMO, |
|
} |
|
|
|
@property |
|
def device(self): |
|
return self.pixel_mean.device |
|
|
|
def encode_text(self, text): |
|
assert text.ndim in [2, 3], text.ndim |
|
b = text.shape[0] |
|
squeeze_dim = False |
|
num_text = 1 |
|
if text.ndim == 3: |
|
num_text = text.shape[1] |
|
text = rearrange(text, 'b n l -> (b n) l', n=num_text) |
|
squeeze_dim = True |
|
|
|
|
|
x = self.text_encoder(text) |
|
|
|
text_x = self.text_projector(x) |
|
|
|
if squeeze_dim: |
|
text_x = rearrange(text_x, '(b n) c -> b n c', n=num_text) |
|
if self.prompt_ctx is not None: |
|
text_ctx = self.prompt_ctx.weight.unsqueeze(0).repeat(text_x.shape[0], 1, 1) |
|
text_x = torch.cat([text_x, text_ctx], dim=1) |
|
|
|
return {"texts": text_x} |
|
|
|
def forward(self, batched_inputs): |
|
""" |
|
Args: |
|
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. |
|
Each item in the list contains the inputs for one image. |
|
For now, each item in the list is a dict that contains: |
|
* "image": Tensor, image in (C, H, W) format. |
|
* "instances": per-region ground truth |
|
* Other information that's included in the original dicts, such as: |
|
"height", "width" (int): the output resolution of the model (may be different |
|
from input resolution), used in inference. |
|
Returns: |
|
list[dict]: |
|
each dict has the results for one image. The dict contains the following keys: |
|
* "sem_seg": |
|
A Tensor that represents the |
|
per-pixel segmentation prediced by the head. |
|
The prediction has shape KxHxW that represents the logits of |
|
each class for each pixel. |
|
* "panoptic_seg": |
|
A tuple that represent panoptic output |
|
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. |
|
segments_info (list[dict]): Describe each segment in `panoptic_seg`. |
|
Each dict contains keys "id", "category_id", "isthing". |
|
""" |
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
|
|
tasks = torch.cat([self.task_tokenizer(x["task"]).to(self.device).unsqueeze(0) for x in batched_inputs], dim=0) |
|
tasks = self.task_mlp(tasks.float()) |
|
|
|
features = self.backbone(images.tensor) |
|
outputs = self.sem_seg_head(features, tasks) |
|
|
|
if self.training: |
|
texts = torch.cat([self.text_tokenizer(x["text"]).to(self.device).unsqueeze(0) for x in batched_inputs], dim=0) |
|
texts_x = self.encode_text(texts) |
|
|
|
outputs = {**outputs, **texts_x} |
|
|
|
|
|
if "instances" in batched_inputs[0]: |
|
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] |
|
targets = self.prepare_targets(gt_instances, images) |
|
else: |
|
targets = None |
|
|
|
|
|
losses = self.criterion(outputs, targets) |
|
|
|
for k in list(losses.keys()): |
|
if k in self.criterion.weight_dict: |
|
losses[k] *= self.criterion.weight_dict[k] |
|
else: |
|
|
|
losses.pop(k) |
|
return losses |
|
else: |
|
mask_cls_results = outputs["pred_logits"] |
|
mask_pred_results = outputs["pred_masks"] |
|
|
|
mask_pred_results = F.interpolate( |
|
mask_pred_results, |
|
size=(images.tensor.shape[-2], images.tensor.shape[-1]), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
del outputs |
|
|
|
processed_results = [] |
|
for i, data in enumerate(zip( |
|
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes |
|
)): |
|
mask_cls_result, mask_pred_result, input_per_image, image_size = data |
|
height = input_per_image.get("height", image_size[0]) |
|
width = input_per_image.get("width", image_size[1]) |
|
processed_results.append({}) |
|
|
|
if self.sem_seg_postprocess_before_inference: |
|
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( |
|
mask_pred_result, image_size, height, width |
|
) |
|
mask_cls_result = mask_cls_result.to(mask_pred_result) |
|
|
|
|
|
if self.semantic_on: |
|
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) |
|
if not self.sem_seg_postprocess_before_inference: |
|
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) |
|
processed_results[-1]["sem_seg"] = r |
|
|
|
|
|
if self.panoptic_on: |
|
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) |
|
processed_results[-1]["panoptic_seg"] = panoptic_r |
|
|
|
|
|
if self.instance_on: |
|
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result) |
|
processed_results[-1]["instances"] = instance_r |
|
|
|
if self.detection_on: |
|
bbox_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result) |
|
processed_results[-1]["box_instances"] = bbox_r |
|
|
|
return processed_results |
|
|
|
def prepare_targets(self, targets, images): |
|
h_pad, w_pad = images.tensor.shape[-2:] |
|
new_targets = [] |
|
for targets_per_image in targets: |
|
|
|
gt_masks = targets_per_image.gt_masks |
|
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) |
|
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks |
|
new_targets.append( |
|
{ |
|
"labels": targets_per_image.gt_classes, |
|
"masks": padded_masks, |
|
} |
|
) |
|
return new_targets |
|
|
|
def semantic_inference(self, mask_cls, mask_pred): |
|
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] |
|
mask_pred = mask_pred.sigmoid() |
|
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) |
|
return semseg |
|
|
|
def panoptic_inference(self, mask_cls, mask_pred): |
|
scores, labels = F.softmax(mask_cls, dim=-1).max(-1) |
|
mask_pred = mask_pred.sigmoid() |
|
|
|
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) |
|
cur_scores = scores[keep] |
|
cur_classes = labels[keep] |
|
cur_masks = mask_pred[keep] |
|
cur_mask_cls = mask_cls[keep] |
|
cur_mask_cls = cur_mask_cls[:, :-1] |
|
|
|
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks |
|
|
|
h, w = cur_masks.shape[-2:] |
|
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) |
|
segments_info = [] |
|
|
|
current_segment_id = 0 |
|
|
|
if cur_masks.shape[0] == 0: |
|
|
|
return panoptic_seg, segments_info |
|
else: |
|
|
|
cur_mask_ids = cur_prob_masks.argmax(0) |
|
stuff_memory_list = {} |
|
for k in range(cur_classes.shape[0]): |
|
pred_class = cur_classes[k].item() |
|
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() |
|
mask_area = (cur_mask_ids == k).sum().item() |
|
original_area = (cur_masks[k] >= 0.5).sum().item() |
|
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) |
|
|
|
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: |
|
if mask_area / original_area < self.overlap_threshold: |
|
continue |
|
|
|
|
|
if not isthing: |
|
if int(pred_class) in stuff_memory_list.keys(): |
|
panoptic_seg[mask] = stuff_memory_list[int(pred_class)] |
|
continue |
|
else: |
|
stuff_memory_list[int(pred_class)] = current_segment_id + 1 |
|
|
|
current_segment_id += 1 |
|
panoptic_seg[mask] = current_segment_id |
|
|
|
segments_info.append( |
|
{ |
|
"id": current_segment_id, |
|
"isthing": bool(isthing), |
|
"category_id": int(pred_class), |
|
} |
|
) |
|
|
|
return panoptic_seg, segments_info |
|
|
|
def instance_inference(self, mask_cls, mask_pred): |
|
|
|
image_size = mask_pred.shape[-2:] |
|
|
|
|
|
scores = F.softmax(mask_cls, dim=-1)[:, :-1] |
|
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) |
|
|
|
|
|
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) |
|
labels_per_image = labels[topk_indices] |
|
|
|
topk_indices = topk_indices // self.sem_seg_head.num_classes |
|
|
|
mask_pred = mask_pred[topk_indices] |
|
|
|
|
|
if self.is_demo: |
|
keep = scores_per_image > self.object_mask_threshold |
|
scores_per_image = scores_per_image[keep] |
|
labels_per_image = labels_per_image[keep] |
|
mask_pred = mask_pred[keep] |
|
|
|
|
|
if self.panoptic_on: |
|
keep = torch.zeros_like(scores_per_image).bool() |
|
for i, lab in enumerate(labels_per_image): |
|
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() |
|
|
|
scores_per_image = scores_per_image[keep] |
|
labels_per_image = labels_per_image[keep] |
|
mask_pred = mask_pred[keep] |
|
|
|
if 'ade20k' in self.metadata.name: |
|
for i in range(labels_per_image.shape[0]): |
|
labels_per_image[i] = self.thing_indices.index(labels_per_image[i].item()) |
|
|
|
result = Instances(image_size) |
|
|
|
result.pred_masks = (mask_pred > 0).float() |
|
if self.detection_on: |
|
|
|
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() |
|
else: |
|
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) |
|
|
|
|
|
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) |
|
result.scores = scores_per_image * mask_scores_per_image |
|
result.pred_classes = labels_per_image |
|
return result |