w601sxs commited on
Commit
98d93be
·
1 Parent(s): 84280ca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -11
app.py CHANGED
@@ -2,11 +2,9 @@ import gradio as gr
2
  import torch
3
  from peft import PeftModel, PeftConfig, LoraConfig
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
- from datasets import load_dataset
6
- from trl import SFTTrainer
7
  # import torch
8
  from transformers import StoppingCriteria, AutoModelForCausalLM, AutoTokenizer, StoppingCriteriaList
9
-
10
 
11
  ref_model = AutoModelForCausalLM.from_pretrained("w601sxs/b1ade-1b", torch_dtype=torch.bfloat16)
12
 
@@ -29,14 +27,9 @@ stop_ids = [tokenizer.encode(w)[0] for w in stop_words]
29
  stop_criteria = KeywordsStoppingCriteria(stop_ids)
30
 
31
 
32
-
33
-
34
-
35
- import numpy as np
36
-
37
  if tokenizer.pad_token_id is None:
38
  tokenizer.pad_token_id = tokenizer.eos_token_id
39
- model.config.pad_token_id = model.config.eos_token_id
40
 
41
  # Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order!
42
  probs_to_label = [
@@ -46,7 +39,6 @@ probs_to_label = [
46
  (0.5, "50%"),
47
  (0.1, "10%"),
48
  (0.01, "1%"),
49
-
50
  ]
51
 
52
 
@@ -78,7 +70,7 @@ def get_tokens_and_labels(prompt):
78
 
79
  # Important: you might need to find a tokenization character to replace (e.g. "Ġ" for BPE) and get the correct
80
  # spacing into the final output 👼
81
- if model.config.is_encoder_decoder:
82
  highlighted_out = []
83
  else:
84
  input_tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
 
2
  import torch
3
  from peft import PeftModel, PeftConfig, LoraConfig
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
5
  # import torch
6
  from transformers import StoppingCriteria, AutoModelForCausalLM, AutoTokenizer, StoppingCriteriaList
7
+ import numpy as np
8
 
9
  ref_model = AutoModelForCausalLM.from_pretrained("w601sxs/b1ade-1b", torch_dtype=torch.bfloat16)
10
 
 
27
  stop_criteria = KeywordsStoppingCriteria(stop_ids)
28
 
29
 
 
 
 
 
 
30
  if tokenizer.pad_token_id is None:
31
  tokenizer.pad_token_id = tokenizer.eos_token_id
32
+ ref_model.config.pad_token_id = ref_model.config.eos_token_id
33
 
34
  # Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order!
35
  probs_to_label = [
 
39
  (0.5, "50%"),
40
  (0.1, "10%"),
41
  (0.01, "1%"),
 
42
  ]
43
 
44
 
 
70
 
71
  # Important: you might need to find a tokenization character to replace (e.g. "Ġ" for BPE) and get the correct
72
  # spacing into the final output 👼
73
+ if ref_model.config.is_encoder_decoder:
74
  highlighted_out = []
75
  else:
76
  input_tokens = tokenizer.convert_ids_to_tokens(inputs.input_ids[0])